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1. Introduction 

The best way for understanding how things work is by understanding their structures [1]. Complex 

networks are not an exception [2]. In order to understand why some networks are more robust than 

others, or why the propagation of a disease in faster in one network than in another is necessary to 

understand how these networks are organized [3-5]. A complex network is a simplified 

representation of a complex system in which the entities of the system are represented by the nodes 

in the network and the interrelations between entities are represented by means of the links joining 

pairs of nodes [3-5]. In analyzing the architecture of a complex network we are concerned only 

with the topological organization of these nodes and links. That is to say, we are not taking care of 

any geometric characteristic of the systems we are representing by these networks but only on how 

the parts are organized or distributed to form the whole system. Some of these topological 

characteristics of a network can be evident by simple visual inspection. This is particularly easy 

when the networks (graphs) are small. For instance, the first two graphs displayed below do not 

contain cycles, i.e., they are trees. The first of them is simply a linear chain and the second a star. 

The third and four graphs are cyclic. The third graph is the cycle of four nodes, 4C , and the last is 

the graph having a connection between every pair of nodes, i.e., the complete graph 4K  [6]. All 

these graphs are connected, which means that we can travel from any node to another in the graph. 

 

However, this visual analysis is not possible even for medium-sized networks. In addition, 

most of the real-world complex networks are very large and the questions we have to formulate to 

understand their structures and functioning are by far more complex [2-5]. Just to have a flavour 

on how complex this problem is we illustrate in the Fig. 1 the network os protein-protein 

interactions in human cells [7]. This network is far from being complete but it already contains 
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more than 3000 nodes [7]. In the Fig. 1 we illustrate some proteins in red that have been identified 

to be responsible of hereditary diseases in humans [7].  

Insert Fig. 1 about here. 

It is evident that we need more sophisticated tools than visual inspection for analyzing the 

structure of complex networks. One of these tools is the spectral graph theory [8]. The spectrum of 

a graph (technically explained in the next section) can be considered as the x-rays test for 

networks. In a similar way as we obtain information from x-ray spectroscopy about the internal 

structure of molecules we can obtain information about the internal organization of complex 

networks with the use of spectral graph theory. This chapter is dedicated to the analysis of graph 

spectra to extract information about the architectural organization of real-world complex networks. 

2. Background on Graph Spectra 

A graph ( )EVG ,=  is a set of nodes V , which are connected by means of the elements of the set 

of links E . Here we are dealing only with simple graphs [6]. That is an undirected graph without 

multiple links or self-loops. Thus, by graph we mean a simple graph. A node Vv∈  is a terminal 

point of a link and represents an abstraction of an entity in a complex network such as a person, a 

city, a protein, an atom, etc. The links represent the relations between these entities. 

A graph ( )EVG ,=  can be represented by different kinds of matrices [6]. The (ordinary) 

spectrum of a graph always refers to the spectrum of the adjacency matrix of the graph [9]. Thus, 

we will be concerned here only with this matrix. Excellent reviews about Laplacian spectrum of 

graphs can be found in the literature [10]. The adjacency matrix ( )GAA =  of a graph ( )EVG ,=  

is a symmetric matrix of order Vn = , where   means the cardinality of the set, where 1=ijA  if 

there is a link between the nodes i  and j  and 0=ijA  otherwise. 

The �spectrum� of a network is a listing of the eigenvalues of the adjacency matrix of such 

network. It is well known that every nn×  real symmetric matrix A has a spectrum of n 

orthonormal eigenvectors nφφφ ,,, 21   with eigenvalues nλλλ ≥≥≥ 21  [11]. The largest 
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eigenvalue of the graph 1λ  is known as the principal eigenvalue, the spectral radius or the Perron-

Frobenius eigenvalue [11]. The eigenvector associated with this eigenvalue is also known as the 

principal eigenvector of the graph. 

A walk of length l is any sequence of (not necessarily) different vertices 121 ,,,, +kk vvvv   

such that for each ki ,,2,1 =  there is an edge from iv  to 1+iv . A closed walk (CW) of length k  is 

a walk in which kk vv =+1  [7]. The number of CWs of length kµ  is determined by the trace of the 

k th power of the adjacency matrix, k

k TrA=µ . This number is also know as spectral moment due 

to the following relationship with graph eigenvalues, 

( )∑
=

=
n

j

k

jk

1

λµ .           (1) 

The number of CWs of length k  starting (and ending) at node p  in the graph can also be 

expressed in terms of the graph eigenvalues and eigenvectors [12], 

( ) ( )[ ] ( )∑
=

=
n

j

k

jjk pp
1

2 λφµ .          (2) 

In a similar way the number of walks of length k starting at node p  and ending at node q  

are given by [12], 

( ) ( ) ( )( )∑
=

=
n

j

k

jjjk qpqp
1

, λφφµ .         (3) 

The spectrum of certain graphs is completely determined by the structure of the graph [9]. 

For instance, the complete graph, which is the graph in which every node is connected to every 

node, has spectrum ( )11−n , ( ) 1
1

−− n
. In the cycle graph, which is a graph on n  nodes containing a 

single cycle through all nodes, the spectrum is given by ( )nj /2cos2 π  ( )1,0 −= nj  . The path or 

linear chain is also determined by its spectrum, which is given ( )1/2cos2 +njπ  ( )nj ,0= . The 

reader is referred to several books, such as [9, 12, 13] for a more thorough discussion and list of 

references to original papers. 
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3. Spectral measures of node centrality 

 

A local characterization of networks is made numerically by using one of several measures 

known as �centrality� [14]. One of the most used centrality measures is the �degree centrality�, DC 

[15], which can be interpreted as a measure of immediate influence, as opposed to long-term effect 

in the network [14]. There are several other centrality measures that have been introduced and 

studied for real world networks, in particular for social networks. They account for the different 

node characteristics that permit them to be ranked in order of importance in the network. 

Betweenness centrality (BC) measures the number of times that a shortest path between nodes i 

and j travels through a node k whose centrality is being measured. The farness of a vertex is the 

sum of the lengths of the geodesics to every other vertex. The reciprocal of farness is closeness 

centrality (CC).  

The first spectral measure of centrality was introduced by Bonacich in 1987 as the eigenvector 

centrality (EC) [16]. This centrality measure is not restricted to shortest paths [16], and it is 

defined as the principal or dominant eigenvector of the adjacency matrix A representing the 

connected subgraph or component of the network. It simulates a mechanism in which each node 

affects all of its neighbors simultaneously [17]. EC is better interpreted as a sort of extended 

degree centrality which is proportional to the sum of the centralities of the node� neighbors. 

Consequently, a node has high value of EC either if it is connected to many other nodes or if it is 

connected to others that themselves have high EC [18]. 

Here we designate the number of walks of length L  starting at node i  by ( )iN L  and the total 

number of walks of this length existing in the network by ( )GN L . The probability that a walk 

selected at random in the network has started at node i  is simply: 

( ) ( )
( )GN

iN
iP

L

L
L =            (4) 
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It is known that for a non-bipartite connected network with nodes n,,2,1  , for ∞→L , the 

vector ( ) ( ) ( )[ ]nPPP LLL 21  tends toward the eigenvector corresponding to the largest 

eigenvalue of the adjacency matrix of the network. Consequently, the elements of EC represent the 

probabilities of selecting at random a walk of length L  starting at node i  when ∞→L : 

( ) ( )iPiEC L=  [12]. 

Another spectral measure of node centrality was introduced recently by Estrada as the subgraph 

centrality of vertex i  in the network, which is given by [19]: 

( ) ( )∑
∞

=

=
0 !k

k

k

i
iSC

µ
.  (5) 

where ( )ikµ  are the number of closed walks of length k  starting and ending at node i . The 

relation of this measure with the graph spectrum comes from the following results. 

Let 1λ  be the principal eigenvalue of A. For any nonnegative integer k  and any { },,...,1 ni∈  

k

k i 1)( λµ ≤ , series (2), whose terms are nonnegative, converges. 

( )
1

0

1

0 !!

λλµ
e

kk

i

k

k

k

k =≤∑∑
∞

=

∞

=

  (6) 

Thus, the subgraph centrality of any vertex i  is bounded above by .)( 1λeiSC ≤  The following 

result shows that the subgraph centrality can be obtained mathematically from the spectra of the 

adjacency matrix of the network. 

Theorem [19]: Let ),( EVG =  be a simple graph of order n  Let nφφφ ,,, 21   be an orthonormal 

basis of nR  composed by eigenvectors of A  associated to the eigenvalues nλλλ ,...,, 21 . Let ( )ijφ  

denote the i th component of .jφ  For all Vi∈ , the subgraph centrality may be expressed as 

follows: 
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( ) ( )[ ]∑
=

=
n

j

j
jeiiSC

1

2 λφ   (7) 

The sum of the subgraph centralities of all nodes in the network SC  depends only on the 

eigenvalues of the adjacency matrix of the network [19]: 

( ) ( ) ∑∑
==

==
n

i

n

i

ieiSCGSC
11

λ           (8) 

SC  is also known as the Estrada index of a graph and several mathematical results are 

available in the literature for this index [20-23]. Hereafter we will follow this designation and 

represent the subgraph centrality as ( )GEE  or simply EE . 

3.1. Subgraph centrality as a partition function 

To start with let us now consider a network in which every pair of vertices is weighted by a 

parameter β . Let B  be the adjacency matrix of this weighted network. It is obvious that AB β=  

and r

rrrr

r µββµ === ABB TrTr )( . In this case, the subgraph centrality can be generalized as 

follows [24]: 

( ) ∑∑
=

∞

=

==
N

jr

r

r

je
r

GEE
10 !

,
βλµβ

β          (9) 

Alternatively, we can write ( )β,GEE  as follows: 

( ) AA βββ e
r

GEE
r

rr

Tr 
!

Tr ,
0

== ∑
∞

=

.                  (10) 

It is straightforward to realize that the subgraph centrality is generalized to the partition 

function of the complex network in the form [25]: 

( ) ( ) Aβββ eEEGZ Tr G,, ≡≡ ,                        (11) 

where the Hamiltonian is H = −A  and β  is the inverse temperature, that is ( )TkB/1=β . Note 

that β  can be considered as the �strength� of the interaction between a pair of vertices, assuming 
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that every pair of vertices has the same interaction strength [25]. For instance, 0=β , which 

corresponds to the limit ∞→T , corresponds to a graph with no links. This case is similar to a gas 

formed by monoatomic particles. On the other hand, very large values of β  in the limit T → +0  

represents very large attractive interactions between pairs of bonded nodes in a similar manner to a 

solid. The �classical� subgraph centrality is the particular case when 1=β , i.e., the unweighted 

network. 

Using this approach we can define the probability jp  that the system occupies a microstate 

j  as follows [25]: 

( )β
βλ

βλ

βλ

,GEE

e

e

e
p

j

j

j

j

j ==
∑

.                   (12) 

Based on Eq. (4) we can also define the information theoretic entropy for the network using 

the Shannon expression [25]: 

( ) ( )[ ]∑ −−=
j

jjB EEpkGS ln, βλβ ,                  (13) 

where we wrote ( ) EEEE =βG, . Then we can obtain the expressions for the total energy ( )GH  

and Helmholtz free energy ( )GF  of the network [25]: 

( ) ∑
=

−=
n

j

jj pGH
1

, λβ ,                    (14) 

( ) EEGF ln, 1−−= ββ .                   (15) 

These statistical mechanics functions of networks are bounded as follows [25]: 

( ) nGS ln,0 ββ ≤≤ ,                    (16) 

( ) ( ) 0,1 ≤≤−− ββ GHn ,                   (17) 

( ) ( ) nGFn ln,1 βββ −≤≤−− ,                     (18) 

where the lower bounds are obtained for the complete graph as ∞→n  and the upper bounds are 

reached for the null graph with n  nodes.  



 9 

3.2. Application  

As a first illustration of the possibilities of the spectral measures of centrality we selected one 

example published recently by Choi et al. [26] in which the eigenvector centrality was used in 

comparing world city networks. The authors ranked the most central cities in the world by 

considering the Internet backbone and air transport intercity linkages. When the authors considered 

only the number of direct links in the Internet backbone network, New York emerged as the most 

connected node, followed by London, Frankfurt, Tokyo and Paris. However, when the eigenvector 

centrality was considered the most central city was London, followed by New York, Paris, 

Frankfurt and Amsterdam. In the network of air passengers the ranking according to the degree 

centrality is dominated by London, followed by Frankfurt, Paris, New York and Amsterdam. The 

use of the eigenvector centrality ranks London as the most central one, but changes the order of the 

other cities, Paris becomes the second most central followed by New York, Amsterdam and 

Frankfurt. The differences arise from the fact that in the eigenvector centrality a city that is 

connected to central cities has its own centrality boosted. Then, it is not only important to have a 

large number of connections but to have these connections with highly central nodes in the 

network. 

In order to illustrate the characteristics of the subgraph centrality we selected an example from 

the collaboration network of Computational Geometry authors [19]. We selected at random two 

authors with the same degree and different subgraph centrality (see Fig. 2): Timothy M. Y. Chan 

and S. L. Abrams, both having DC = 10, but having 91009.8 ⋅=SC  and 47.974=SC , 

respectively. Despite both authors� having the same number of coauthors, Chan is connected to 

five of the hubs of this collaboration network: Agarwal (98), Snoeyink (91), Sharir (87), Tamassia 

(79) and Yap (76) (DC are given in parenthesis). However, Abrams is connected to authors having 

lower numbers of coworkers; e.g., Patrikalakis has 31 coauthors and the rest have only five to 16 

collaborators. This simple difference means that Chan is separated from 623 other authors by a 
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distance of only two; i.e., simply connected triplets, while this number is significantly lower for 

Abrams, i.e., only 116. The risk that Chan is �infected� with an idea circulating among the authors 

in this field of research is much higher than the risk with Abrams. This difference is accounted for 

the subgraph centrality [19]. 

Insert Fig. 2 about here. 

4. Global topological organization of complex networks 

Our objective here is to give a characterization of the global organization of complex 

networks. The first step for analyzing the global architecture of a network is to determine whether 

the network is homogeneous or modular. In a homogeneous network what you see locally is what 

you get globally from a topological point of view. However, in a modular network the organization 

of certain modules or clusters would be different from one to another and to the global 

characteristics of the network [27-29].  

Formally, we consider a network is homogeneous if it has good expansion (GE) properties. A 

network has GE if every subset S  of nodes (S ≤ 50% of the nodes) has a neighborhood that is 

larger than some �expansion factor� Ω  multiplied by the number of nodes in S . A neighborhood 

of S  is the set of nodes which are linked to the nodes in S  [30]. Formally, for each vertex Vv∈  

(where V  is the set of nodes in the network), the neighborhood of v , denoted as ( )vΓ  is defined 

as: ( ) ( ){ }EvuVuv ∈∈=Γ ,  (where E  is the set of links in the network). Then, the neighborhood 

of a subset VS ⊆  is defined as the union of the neighborhoods of the nodes in S : 

( ) ( ) Sv
vS

∈
Γ=Γ  and the network has GE if ( ) Sv Ω≥Γ  VS ⊆∀ . 

Consequently, in a homogeneous network we should expect that some local topological 

properties scale as a power-law of global topological properties. A power-law relationship between 

a two variables x   and y  of the network is known by the term scaling and refers to the 

relationship [31], 

ηAxy = ,                      (19) 
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where A and η  are constant. The existence of a scaling law reveals that the phenomenon under 

study reproduces itself on different time and/or space scales. That is, it has self-similarity [31]. 

Then, if  x   and y  are variables representing some topological features of the network at the local 

and the global scale, the existence of such scaling implies that the network is topological self-

similar and what we see locally is what we get globally, which means that the network is 

homogeneous. In the following section we develop an approach to account for such scaling. 

4.1. Spectral scaling method 

Our first task here is to find a couple of appropriate topological variables for a network which 

characterize the local and global environment around a node. As for the local property we consider 

the subgraph centrality. As we already noted this spectral measure characterizes the local 

cliquishness around a node because it gives larger weights to the participation of a node in smaller 

subgraphs. It should be noted that ( )iEE  counts all CWs in the network, which can be of even or 

odd length. CWs of even length might be trivial on moving back and forth in acyclic subgraphs, 

i.e., those that do not contain cycles, while odd CWs do not contain contributions from acyclic 

subgraphs. It is easy to show [32] that: 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )iEEiEEiiiEE oddeven

N

j

jj

N

j

jj +=+= ∑∑
== 1

2

1

2
sinhcosh λφλφ             (20) 

which means that the term ( )iEEodd  only accounts for subgraphs containing at least one odd cycle. 

In this way ( )iEEodd  can be considered as a topological property of local organization in networks 

that characterise the odd-cyclic wiring of a typical neighbourhood. As a global topological 

characterization of the environment around a node we consider the eigenvector centrality. We have 

already shown that the eigenvector centrality EC represents the probability of selecting at random 

a walk of length L  starting at node i  when ∞→L  [12]. Due to the infinite length of the walk we 

are considering, such a walk visit all nodes and links of the network obtaining a global picture of 

the global topological environment around the corresponding node. 
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Now, we can establish the relationship between the local and global spectral properties of a 

network. To start with, we consider a graph with GE properties. Then, it is known that for a 

network to have good expansion the gap between the first and second eigenvalues of the adjacency 

matrix ( 12 λλλ −=∆ ) need to be sufficiently large. For instance, the following is a well-known 

result in the field of expander graphs [33-35], 

Theorem (Alon-Milman): Let G  be a regular graph with spectrum nλλλ ≥≥≥ 21 . Then, the 

expansion factor is bounded as, 

( ) ( )211
21 2

2
λλλφ

λλ
−≤≤

−
G . 

Then, let us write ( )iEEodd  as follows 

 ( ) ( )[ ] ( ) ( )[ ] ( )
j

j

jodd iiECiEE λφλ sinhsinh
2

2

1

2 ∑
=

+= ,                (21) 

where ( )iEC  is the eigenvector centrality (the principal eigenvector ( )i1φ ) and 1λ  is the principal 

eigenvalue of the network. Then, let us assume that 21 λλ >>  in such a way that we can consider 

that ( )[ ] ( ) ( )[ ] ( )
j

j

j iiEC λφλ sinhsinh
2

2

1

2 ∑
=

>> . Consequently, we can write the odd-subgraph 

centrality as, 

   ( ) ( )[ ] ( )1

2
sinh λiECiEEodd ≈ ,                  (22) 

and the principal eigenvector of the network is directly related to the subgraph centrality in GENs 

according to the following spectral scaling relationship [36, 37]: 

( ) ( )[ ]ηiEEAiEC odd∝ .                    (23) 

which corresponds to the power-law relationship between the ( )iEC  and ( )iEEodd  for GENs, 

which is similar to the one given by (19) where x   and y  are variables representing some 

topological features of the network at the local and the global scale. Here, ( )[ ] 5.0

1sinh
−≈ λA  and 

5.0≈η . This expression can be writte in a log-log scale as [36, 37]:
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( )[ ] ( )[ ]iEEAiEC oddlogloglog η+= .                  (24) 

Consequently, a log-log plot of ( )iEC  vs. ( )iEEodd  in a homogeneous network has to show a 

linear fit with slope 5.0≈η  and intercept Alog  for GENs. 

4.2. Universal topological classes of networks 

There are several classification schemes grouping networks according to their structures. For 

instance, complex networks can be classified according to the existence or not of the �small-

world� property [38, 39] or according to their degree distribution. The last classification permits to 

classify networks as �scale-free� [40] if their node degree distribution decays as a power-law, 

�broad-scale� networks, which are characterized by a connectivity distribution that has a power-

law regime followed by a sharp cutoff, or �single-scale� networks in which degree distribution 

displays a fast decaying tail [41]. Even scale-free networks have been classified into two different 

subclasses according to their exponent in the power-law distribution of the betweenness centrality 

[42].  

Each of these classification schemes reproduces different characteristics of complex 

networks. �Small-worldness� [38] and �scale-freeness� [40] reflect global organizational 

principles of complex systems. The first characterizes the relatively small separation among pairs 

of nodes and the high cliquishness of some real-world networks [38]. The second reproduces the 

presence of a few highly connected hubs that maintain glued the vast majority of poorly connected 

nodes in certain networks [40]. Both properties are of great relevance in analyzing other important 

properties of complex networks, such as disease propagation [43-45] or robustness against targeted 

or random attacks [46-48]. However, there are important organizational principles of complex 

networks which escape the analysis of these global network characteristics.  

The theoretical approach we presented in the previous section permits the classification of 

complex networks into two groups: homogeneous (GEN) and non-homogeneous networks. Here 
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we are interested in identifying the topological differences existing among the non-homogeneous 

networks in such a way that permit us to classify them into some universal classes. 

Let us consider the ideal case in which a network displays perfect spectral scaling, such that 

we can calculate the eigenvector centrality by using the following expression, 

( ) ( ) ( )[ ]1sinhlog5.0log5.0log λ−= iEEiEC odd

Ideal

.                (25) 

Now, let us consider the deviations from the ideal behavior represented by Eq. (22) in non-

homogeneous networks. We can account for these deviations from ideality by measuring the 

departure of the points from the perfect straight line respect to ( )iEC Ideallog : 

( ) ( )
( )

( )[ ] ( )
( )

5.0

1

2
sinh

logloglog








==∆
iEE

iEC

iEC

iEC
iEC

odd

Ideal

λ

.

               (26) 

Then, according to the values of ( )iEClog∆  there are four different classes of complex 

networks. These classes are [49]: 

 Class I:  networks displaying perfect spectral scaling:  

( ) ( )[ ] ( ) ( )iEEiECViiEC odd≅⇒∈∀≅∆ 1

2
sinh,0log λ

.
                 (27) 

 Class II: networks displaying spectral scaling with negative deviations: 

( ) ( )[ ] ( ) ( ) ViiEEiECiEC odd ∈≤⇒≤∆ ,sinh0log 1

2 λ
.
               (28) 

 Class III: networks displaying spectral scaling with positive deviations: 

( ) ( )[ ] ( ) ( ) ViiEEiECiEC odd ∈≥⇒≥∆ ,sinh0log 1

2 λ
.
                   (29) 

 Class IV: networks displaying spectral scaling with mixed deviations: 

( ) VppEC ∈≤∆ ,0log  and ( ) VqqEC ∈>∆ ,0log .                (30) 

We previously showed that the first of such classes corresponds to networks displaying good 

expansion properties. That is, networks in which nodes and links are homogeneously distributed 

through the network in such a way that there are not structural bottlenecks. The other three classes 
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correspond to different organizations of the community structure in the networks. Class II 

corresponds to networks in which there are two or more communities of highly interconnected 

nodes, which display low inter-module connectivity. This kind of networks looks like networks 

containing holes in their structures. In class III the networks display a typical �core-periphery� 

structure characterized by a highly interconnected central core surrounded by a sparser periphery 

of nodes. Finally, class IV networks display a combination of highly connected groups (quasi-

cliques) and some groups of nodes partitioned into disjoint subsets (quasi-bipartite), without a 

predominance of any of both structures. In Fig. 3 we illustrate the main structural properties of 

non-homogeneous networks and their respective spectral scaling plots. 

Insert Fig. 3 about here. 

In order to quantify the degree of deviation of the nodes from the ideal spectral scaling we 

account for the mean square error of all points with positive and negative deviations in the spectral 

scaling, respectively [49]: 

( )
( )∑+

+

+








=

iEC

iEC

N Ideal
log

1ξ  and 
( )
( )∑−

−

−








=

iEC

iEC

N Ideal
log

1ξ , 

where ∑+
and ∑−

are the sums carried out for the +N  points having ( ) 0log >∆ iEC  and for 

the −N  having ( ) 0log <∆ iEC , respectively. 

4.3. Applications 

We have studied 61 real-world complex networks accounting for ecological, biological, 

protein secondary structures, informational, technological and social systems [49]. Using the 

values of −ξ  and +ξ  we have classified these networks into the four different classes which are 

predicted to exist from a theoretical point of view. We have carried out a canonical discriminant 

analysis (CDA) [44] for the 61 networks studied using ( )310log −− +ξ  and ( )310log −+ +ξ as 

classifiers, where the sum of the constant 310−  is necessary to avoid indeterminacies due to zero 
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values. In Fig. 4 we can see the main factors (roots) which perfectly separate the networks studied 

into the four different structural classes.  

Insert Figure 4 about here 

Consequently, we have identified the existence of the four classes of networks in real-world 

systems by studying a large pool of networks representing ecological, biological, informational, 

technological and social systems. While classes I, II and IV are equally populated, each having 

about 32% of the total networks, class III is less frequent and only appeared in two ecological 

networks. In general, most ecological networks correspond to class I (70%) and they represent the 

only systems in which the four classes of networks are represented. Most biological networks 

studied correspond to class IV (67%), while all protein secondary structure networks correspond to 

class II. Informational networks are mainly classified into two classes: class I (50%) and class II 

(33.3%). On the other hand, technological networks are mainly in class IV (64%), while 27% 

correspond to class I. Social networks also display great homogeneity in their structural classes as 

they correspond mainly to classes II and IV (91%) [49]. 

We finally have explored the possible growing mechanisms determining the structural 

classes observed in this work. We found that a random growing mechanism giving rise to uniform 

distributions of node degrees and the preferential attachment mechanism of Barabási-Albert 

reproduces very well the characteristics of networks in group I when the average degree is larger 

than 5. For sparser networks, such as those having average degree lower than 3, both mechanisms 

reproduce the characteristics of networks in class IV. However, neither of both growing 

mechanisms are able to reproduce the topological organization of networks in classes II and III 

[49]. Similar results are obtained when generating random networks with the same degree 

sequence as real-world networks. Our results confirm previous findings about the necessity of 

investigating new growing mechanisms for generating networks to model real-world systems [50]. 

5. Communicability in complex networks 
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The communicability between a pair of nodes in a network is usually considered as taking 

place through the shortest path connecting both nodes. However, it is known that communication 

between a pair of nodes in a network does not always take place through the shortest paths but it 

can follow other non-optimal walks [51-53]. Then, we can consider a communicability measure 

that accounts for a weighted sum of all walks connecting two nodes in the network. We can design 

our measure in such a way that the shortest path connecting these two nodes always receives the 

largest weight. Then, if Ppq

(s )  is the number of shortest paths between the nodes p  and q  having 

length s  and Wpq

(k)  is the number of walks connecting p  and q  of length sk > , we propose to 

consider the quantity [54] 

Gpq =
1

s!
Ppq +

1

k!
Wpq

(k)

k>s

∑ .                   (31) 

In fact, (31) can be written as the sum of the qp,  entry of the different powers of the 

adjacency matrix,  

( )
∑
∞

=

=
0 !k

pq

k

pq
k

G
A

.                    (32) 

which converges to [54] 

( ) ( ) ( ) jeqpeG j

n

j

jpq

A

pq

λφφ∑
=

==
1

.                  (33) 

We call pqG  the communicability between the nodes p  and q  in the network. The 

communicability should be minimum between the end nodes of a chain, where it vanishes as the 

length of the chain is increased. On the other hand, the communicability between an arbitrary pair 

of nodes in the complete graph diverges as the size of the graph is increased because the oscillation 

is greatly amplified because of the infinitely many walks between the nodes. Thus, the 

communicability between a pair of nodes in a network is bounded between zero and infinity, 
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which are obtained for the two end nodes of an infinite linear chain and for a pair of nodes in an 

infinite complete graph. For the linear chain nP  the value of pqG  is equal to [54] 

Gpq =
1

n +1
cos

jπ p − q( )
n +1

− cos
jπ p + q( )

n +1







e
2 cos

jπ
n+1







j

∑ .               (34) 

Let P∞  be a chain of infinite length. It is straightforward to realize by simple substitution in (34) 

that 0,1 =∞G  for the end nodes p = 1 and q = ∞ . For the complete graph we have that [54] 

Gpq =
en−1

n
+ e−1 ϕ j (p)ϕ j (q) =

j=2

n

∑ en−1

n
−

1

ne
=

1

ne
en −1( ),                (35) 

and it is easy to see that Gpq →∞  as n →∞  for nK .   

A physical interpretation of the communicability can be done by considering a continuous-

time quantum walk on the network. Take a quantum-mechanical wave function ψ t( )  at time t . 

It obeys the Schrödinger equation [55] 

( ) ( )tt
dt

d
i ψψ A−= ,                   (36) 

where we use the adjacency matrix as the negative Hamiltonian. 

Assuming from now on that 1=  we can write down the solution of the time-dependent 

Schrödinger equation (33) in the form ( ) ( )0ψψ tiet A= . The final state qe tiA  is a state of the 

graph that results after time t  from the initial state q . The �particle� that resided on the node q  

at time 0=t  diffuses for the time t  because of the quantum dynamics. Then, we can obtain the 

amplitude that the �particle� ends up at the node p  of the network by computing the product 

qep tiA . By continuation from the real time t  to the imaginary time, we have the thermal 

Green�s function defined as qepG pq

A= , which is the communicability between nodes p  and 

q  in the network as defined in this work [54]. Consequently, the communicability between nodes 

p  and q  in the network represents the probability that a particle starting from the node p ends up 
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at the node q after wandering on the complex network due to the thermal fluctuation. By regarding 

the thermal fluctuation as some form of random noise, we can identify the particle as an 

information carrier in a society or a needle in a drug-user network. 

5. 1. Communicability and network communities 

Many complex networks in the real-world are not homogeneous as we have already seen 

previously in this Chapter. Instead, the nodes in most networks appear to group in subgraphs in 

which the density of internal connections is larger than the connections with the rest of the nodes 

in the network. This notion was first introduced by Girvan and Newman [56] and it is know as the 

community structure of complex networks [57-61]. In the language of communicability we are 

using in this section we can say that a community is a group of nodes having larger 

communicability among them than with the rest of the nodes in the graph. Later on we will give a 

more formal definition of community. 

In order to make further analysis, we now use the spectral decomposition of the Green�s 

function [62]. Imagine that the network has a spring on each link. Each eigenvector indicates a 

mode of oscillation of the entire network and its eigenvalue represents the weight of the mode. It is 

known that the eigenvector of the largest eigenvalue λ1  has elements of the same sign. This means 

that the most important mode is the oscillation where all nodes move in the same direction at one 

time. 

The second largest eigenvector 2φ  has both positive and negative elements. Suppose that a 

network has two clusters connected through a bottleneck but each cluster is closely connected 

within. The second eigenvector represents the mode of oscillation where the nodes of one cluster 

move coherently in one direction and the nodes of the other cluster move coherently in the 

opposite direction. Then the sign of the product ( ) ( )qp 22 φφ  tells us whether the nodes p and q are 

in the same cluster or not. 
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The same analysis can be applied to the rest of the eigenvalues of the network. The third 

eigenvector 3φ , which is orthonormal to the first two eigenvectors, have a different pattern of 

signs, dividing the network into three different blocks after appropriate arrangement of the nodes. 

In general, the second eigenvector divides the graph into biants, the third divides it into triants, the 

fourth into quadrants, and so forth, but these clusters are not necessarily independent of each other. 

According to this pattern of signs we have the following decomposition of the thermal 

Green�s function [54]: 

( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .           
22

22

11









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+



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


++=

∑∑

∑∑
+−

=

+−
−+

=

−+

−−

=

−−
++

=

++

j

jj

j

jj

j

jj

j

jjpq

jj

jjj

eqpeqp

eqpeqpeqpG

λλ

λλλ

φφφφ

φφφφφφ

              (37) 

where +
jφ  and −

jφ  refer to the eigenvector components with positive and negative signs, 

respectively. According to the partitions made by the pattern of signs of the eigenvectors in a 

graph, two nodes have the same sign in an eigenvector if they can be considered as being in the 

same partition of the network, while those pairs having different signs correspond to nodes in 

different partitions. Thus, the first bracket in (34) represents the background mode of translational 

movement. The second bracket represents the intracluster communicability between nodes in the 

network and the third bracket represents the intercluster communicability between nodes [54].  

The above consideration motivates us to define a quantity ∆Gpq  by subtracting the 

contribution of the largest eigenvalue λ1  from Eq. (34) [54]: 

( ) ( ) ( ) ( ) jj eqpeqpG j

i

j

jj

j

jpq

λλ φφφφ ∑∑
==

+=∆
rntercluste

2

erintraclust

2

.                (38) 

By focusing on the sign of ∆Gpq , we can unambiguously define a community for a group of nodes. 

If ∆Gpq  for a pair of nodes p and q have a positive sign, they are in the same community. If ∆Gpq  

for the two nodes have a negative sign they are in different clusters [54]. 
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Definition: A community in a network is a groups of nodes VU ⊆  for which the intracluster 

communicability is larger than the intercluster communicability, i.e., ( ) UqpG pq ∈∀>∆ ,,0 . 

5.2. Detection of communities: The communicability graph 

To start with we represent the values of pqG∆  in the form of a matrix ǻ . ǻ  is a matrix 

whose nondiagonal entries are given by the values of pqG∆  and zeroes in the main diagonal. Now, 

let us introduce a Heaviside step function:  

( )




≤
>

=Θ
0 if 0

0 if 1

x

x
x .                    (39) 

Let ( )ǻΘ  be the result of applying the Heaviside step function in an elementwise way to the 

matrix ǻ . Then, in the resulting matrix ( )ǻΘ  a pair of nodes p  and q  is connected if, and only if, 

they have 0>∆ pqG . Then let us define the following graph [63]. 

Definition: The communicability graph ( )GΘ  is the graph having adjacency matrix ( )ǻΘ . 

In such a graph two nodes are connected if they have 0>∆ pqG . That is to say, the nodes 

forming a community in the original graph are connected in the communicability graph. Now, 

suppose that there is a link between the nodes p  and q  and there are also links between them and 

a third node r . This means that 0>∆ pqG , 0>∆ prG  and 0>∆ qrG . Consequently, the three 

nodes form a positive subgraph C . As we want to detect the largest subset of nodes connected to 

this triple we have to search for the nodes s  for which CiGis ∈∀>∆   0 . Using the 

communicability graph, this search is reduced to finding the cliques in a simple graph, ( )ǻΘ . 

These cliques correspond to the communities of the network. A clique is a maximum complete 

subgraph in the graph. That is a maximum subgraph in which every pair of nodes is connected. 

Finding the cliques in a graph is a classical problem in combinatorial optimization, which 

has found applications in diverse areas [64]. Here we use a well-known algorithm due to Bron and 

Kerbosch [65], which is a depth-first search for generating all cliques in a graph. This algorithm 
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consumes a time per clique which is almost independent of the graph size for random graphs and 

for the Moon-Moser graphs of n  vertices the total time is proportional to ( ) 3/
14.3

n
. The Moon-

Moser graphs have the largest number of maximal cliques possible among all n-vertex graphs 

regardless of the number of edges in the graph [66]. 

5. 3. Application 

As an example of a real-world network, we consider a friendship network known as the 

Zachary karate club, which has 34 members (nodes) with some friendship relations (links). The 

members of the club, after some entanglement, were eventually fractioned into two groups, one 

formed by the followers of the instructor and the other formed by the followers of the 

administrator [67]. This network has been analyzed in practically every paper considering the 

problem of community identification in complex networks. In Fig. 5a we illustrate the Zachary 

network in which the nodes are divided into the two classes observed by Zachary on the basis of 

the friendship relationships among the members of the club.  

In the Fig. 5b we illustrate the communicability graph ( )GΘ  of the Zachary network. As 

can be seen ( )GΘ  correctly divides the network into two groups. There is very high internal 

communicability among the members of the respective groups but there is almost no 

communicability between the groups. In fact, the node 3 is correctly included in the group of the 

instructor (node 1). 

Insert Fig. 5 about here. 

The analysis of the cliques in the communicability graph reveals a more detailed view of 

the community structure of this network. Accordingly, there are five different cliques representing 

five overlapping communities in the network. These communities are given below, where the 

numbers correspond to the labels of the nodes in Fig. 5a: 
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{ }
{ }
{ }
{ }
{ }10,3:

22,20,18,17,14,13,12,11,8,7,6,5,4,3,2,1:

34,33,32,30,29,28,27,26,25,24,23,21,19,16,15,10:

34,33,32,31,30,29,28,27,24,23,21,19,16,15,10,9:

34,33,32,31,30,29,28,27,26,24,23,21,19,16,15,10:

5

4

3

2

1

 

As can be seen, the first three communities, which correspond to the group of the 

administrator (node 34), are formed by 16 members each, and display an overlap of about 94% 

(see Fig. 6). The fourth community corresponds to the one of the instructor (node 1) and also has 

16 members. The last community is formed by the nodes 3 and 10 only. This community displays 

overlaps with the communities of the administrator as well as with the one of the instructor. In fact, 

node 10 appears in communities 1 to 4, and node 3 appears in communities 4 and 5. 

Insert Fig. 6 about here. 

6. Network Bipartivity 

There are numerous natural systems that can be modelled by making a partition of the 

nodes into two disjoint sets [68, 69]. For instance, in a network representing heterosexual 

relationships one set of nodes corresponds to female and the other to male partners. In some trade 

networks one set of nodes can represent buyers and the other sellers, and so forth. These networks 

are named bipartite networks or graphs and are formally defined below [6]. 

Definition: A network (graph) ),( EVG =  is called bipartite if its vertex set V  can be partitioned 

into two subsets 1V  and 2V  such that all edges have one endpoint in 1V  and the other in 2V .  

Now, let us consider the case in which some connections between the nodes in the same set 

of a formerly bipartite network are allowed. Strictly speaking these networks are not bipartite but 

we can consider them loosely as almost-bipartite networks. For instance, if we consider a sexual 

relationships network in which not only heterosexual but also some homosexual relations are 

present the network is not bipartite but it could be almost-bipartite if the number of homosexual 

relations is low compared to the number of heterosexual ones. It is known that the transmission 
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rates for homosexual and heterosexual contacts differ [69]. Consequently, the transmission of this 

disease will depend on how bipartite the corresponding network is. In other words, having an idea 

of the bipartivity of sexual networks we will have an idea on the rate of spreading of a sexually 

transmitted disease.  

The following is a well-known result due to König that permits us to characterize bipartite 

graphs [70]. 

Theorem (König): A graph is bipartite if and only if all its cycles are even. 

We will make use of this result in order to characterize the bipartivity of a network. To start 

with we consider the subgraph centrality of the whole graph defined by (5). We can express this 

index as the sum of two contributions, one coming from odd and the other from even CWs [32]: 

( ) [ ] oddeven

n

j

jj EEEEGEE +=+=∑
=1

)sinh()cosh( λλ .                (40) 

If ( )EVG ,  is bipartite then according to the theorem of König [70]: 0)sinh(
1

==∑
=

n

j

joddEE λ  

because there are no odd CWs in the network [32]. Therefore:  

( ) ∑
=

==
n

j

jevenEEGEE
1

)cosh(λ .                   (41) 

Consequently, the proportion of even CWs to the total number of CWs is a measure of the network 

bipartivity [32]: 

( )

( )

∑

∑

=

==
+

==
n

j

n

j

j

oddeven

eveneven

je
EEEE

EE

GEE

EE
G

1

1

cosh

)(
λ

λ
β  .                 (42) 

It is evident that ( ) 1≤β G  and ( ) 1=β G  if, and only if, G  is bipartite, i.e., 0=oddEE . 

Furthermore, as oddEE≤0  and )cosh()sinh( jj λ≤λ , iλ∀ , then ( )Gβ<
2
1  and ( ) 1

2
1 ≤β< G . The 

lower bound is reached for the least possible bipartite graph with n  nodes, which is the complete 
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graph nK . As the eigenvalues of nK  are 1−n  and 1−  (with multiplicity 1−n ), then ( )
2
1→β G  

when ∞→n  in nK .  

Then, ( )Gβ  represents a quantitative characterization of the bipartivity of a complex 

network. Now, we have a quantitative measure which permits us to discern between quasi-bipartite 

networks as well as to differentiate them from bipartite and not bipartite graphs. However, still an 

open question remains: Can we identify the bipartite subgraphs existing in a network? 

6.1. Detecting bipartite substructures in complex networks 

It is known that the eigenvectors corresponding to positive eigenvalues give a partition of 

the network into clusters of tightly connected nodes [71, 72]. In contrast, the eigenvectors 

corresponding to negative eigenvalues make partitions in which nodes are not close to those which 

they are linked, but rather with those with which they are not linked [71, 72]. Then we can make 

use of the communicability function to identify the bipartite structures in complex networks. In 

general we can say that a positive (negative) value of β  in the communicability function (30) 

increases the contribution of the positive (negative) eigenvalues to the communicability function. 

Then if we write the communicability function as [73] 

Gpq β( )= φ j p( )φ j q( )eβλ j

λ j <0

∑ + φ j p( )φ j q( )eβλ j

λ j =0

∑ + φ j p( )φ j q( )eβλ j

λ j >0

∑ ,             (43) 

we have that  

( ) ( ) ( )∑
>

≈>
n

jjpq

j

jeqpG
0

0
λ

βλφφβ ,                  (44) 

( ) ( ) ( )∑
<

−≈<
n

jjpq

j

jeqpG
0

0
λ

λβφφβ .                  (45) 

In other words, ( )0>βpqG  determines a partition of the network into clusters of tightly 

connected nodes, which corresponds to the network communities. On the other hand, for 

( )0<βpqG  the network is partitioned in such a way that the nodes are close to other nodes which 
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have similar patterns of connections with other sets of nodes, i.e., nodes to which they are 

structurally equivalent. In the first case, we say that the nodes corresponding to larger components 

tend to form quasi-cliques. That is, clusters in which every two nodes tend to interact with each 

other. In the second case, the nodes tend to form quasi-bipartites, i.e., nodes are partitioned into 

almost disjoint subsets with high connectivity between sets but low internal connectivity.  

Let us consider a bipartite graph and let p  and q  be nodes which are in two different 

disjoint sets of the graph. Then, there are no walks of even length between p  and q  in the graph 

and [73] 

Gpq β = −1( )= − sinh A( )  pq
< 0 .                  (46) 

However, if p  and q  are nodes in the same disjoint set, then there is no walk of odd length 

connecting them due to the lack of odd cycles in the bipartite graph, which makes 

Gpq β = −1( )= cosh A( )  pq
> 0 .                  (47) 

The above argument shows that, in general, the sign of the communicability at a negative 

temperature, Gpq β = −1( )= e−A( )
pq

, gives an indication as to how the nodes can be separated into 

disjoint sets.  

Our strategy for detecting quasi-bipartite clusters in complex networks is as follows. First 

we start by calculating ( )A−exp , whose p,q( )-entry gives the communicability between the 

nodes p  and q  in the network. The we introduce the following definition [73] 

Definition 2. The node-repulsion graph is a graph whose adjacency matrix is given by 

( )[ ]A−Θ exp , which results from the elementwise application of the function ( )xΘ  to the matrix 

( )A−exp . A pair of nodes p  and q  in the node-repulsion graph ( )[ ]A−Θ exp  is connected if, and 

only if, they have 0>pqG . The Heaviside function ( )xΘ  was already introduced in (39). 
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Using the node-repulsion graph, the search for quasi-bipartite subgraphs in the complex 

network is reduced to finding the cliques in a simple graph, ( )[ ]A−Θ exp . These cliques correspond 

to the quasi-bipartite clusters of the network [73].  

6.2. Application 

Here we study the food web of Canton Creek, which consists primarily of invertebrates and 

algae in a tributary, surrounded by pasture, of the Taieri River in the South Island of New Zealand 

[74]. This network consists of 108 nodes (species) and 707 links (trophic relations). Using our 

current approach, we find that this network can be divided into two almost-bipartite clusters, one 

having 66 nodes and the other 42.  Only 20 links connect nodes in the same clusters, 13 of them 

connect nodes in the set containing 66 nodes and the other 7 connect nodes in the set of 42 nodes. 

Thus 97.2% of links are connections  between the two almost-bipartite clusters and only 2.8% 

links are intracluster connections [73]. In Fig. 7, we illustrate the network and its quasi-bipartite 

clusters as found in the current work. The value of the bipartivity measure for this network 

775.0=β  indicates that the network in general is not bipartite but that an important presence of 

bipartite and quasi-bipartite structures are present in the graph, which is corroborated by our 

algorithm for finding such structures [73]. 

Insert Fig. 7 about here. 

7. Conclusion 

The discovery of X-rays more than a century ago has increased our knowledge in many 

fields, such as the structure of matter, cosmology, security in technology and X-rays diagnostics, 

among others. The existence of a tool, like X-rays and other spectroscopic techniques, permits us 

to understand the internal structure of the systems under study from molecules and materials to the 

human body. In a similar way spectral graph theory is the X-ray machine for studying complex 

networks. As we have shown here the use of graph spectral techniques permits us to analyze the 

local and global structure of complex networks.  
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Using graph spectral theory it is possible to �see� how central a node is based on its 

weighted participation in all substructures present in the graph. The same techniques permit us to 

analyze whether a network is homogeneous or modular. In the last case it permits to classify their 

structures according to certain universal structural classes, no matter if it is representing a cell or a 

society. In addition, the spectral techniques explained in this Chapter permit us to identify the 

communities existing in a complex network, as well as the bipartivity structure of certain 

substructures present in such systems. There many other characteristics of complex networks that 

can be investigated by using the spectra of graphs. Some of them have been already described by 

the scientists working in this field, others are still waiting for the development of the appropriate 

tools. I hope this chapter contributes to inspire the development of new spectral measures for 

characterizing the structure and functioning of complex networks. 
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Figure captions 

Fig. 1. Representation of the human protein-protein interaction network. The proteins marked in 

red are those which have been identified to be involved in human diseases in the Online Mendelian 

Inheritance in Man (OMIM). 

Fig. 2. Part of the collaboration network in Computational Geometry for two author with the same 

degree centrality but different subgraph centrality: Timothy M. Y. Chan and S. L. Abrams and all 

their coworkers. 

Fig. 3. Models of networks in class II, III and IV according to the classification carried out by 

using the spectral scaling approach. In the left we show the corresponding spectral scaling for 

these networks. 

Fig. 4. Plot of the two principal roots obtained in the canonical discriminant analysis (CDA) of the 

61 networks classified into four different structural classes. Ellipses correspond to 95% of 

confidence in the CDA. 

Fig. 5. (a) The friendship network from the karate club and the two communities identified by 

Zachary. (b) The communicability graph associated to the karate club network. The numbering is 

the same in both figures. 

Fig. 6. Illustration of the overlapping between two groups or neighborhoods formed among the 

followers of the administrator (node 34) in the Zachary karate club network. 

Fig. 7. (a) Network representation of the food web of Canton Creek. (b) Bipartite structure of this 

network as found by the method explained here. Nodes in each quasi-bipartite cluster are 

represented by squares and circles of two different clours. The red thick lines represent the 

intracluster connections and the gray lines the intercluster links. 
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Fig. 1 
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Fig. 2 
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Fig. 3. 

 
 

 

 

 
 



 37 

Fig. 4 
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Fig. 5 
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Fig. 6. 
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Fig. 7 
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