Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Spectral theory of networks : from biomolecular to ecological systems

Estrada, Ernesto (2009) Spectral theory of networks : from biomolecular to ecological systems. In: Analysis of Complex Networks. Wiley-VCH, pp. 55-83. ISBN 9783527627981

[img]
Preview
Text (strathprints015035)
strathprints015035.pdf
Accepted Author Manuscript

Download (509kB) | Preview

Abstract

The best way for understanding how things work is by understanding their structures [1]. Complex networks are not an exception [2]. In order to understand why some networks are more robust than others, or why the propagation of a disease in faster in one network than in another is necessary to understand how these networks are organized [3-5]. A complex network is a simplified representation of a complex system in which the entities of the system are represented by the nodes in the network and the interrelations between entities are represented by means of the links joining pairs of nodes [3-5]. In analyzing the architecture of a complex network we are concerned only with the topological organization of these nodes and links. That is to say, we are not taking care of any geometric characteristic of the systems we are representing by these networks but only on how the parts are organized or distributed to form the whole system.