Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Apparatus and method for electric spark peening of gas turbine components

Timoshkin, I. (2008) Apparatus and method for electric spark peening of gas turbine components. 20100008786.

Full text not available in this repository. Request a copy from the Strathclyde author


Peening provides compression of component (6, 46, 56) surfaces in order to create residual surface compressions to resist crack propagation in components such as aerofoils. Previously peening techniques have had problems with respect to achieving adequate treatment depths, speed of treatment and with respect to effectiveness. By the present method arrangement an electrical conductor (1, 41, 51) in the form of a wire is subject to electrical pulses to cause evaporation and subsequent breakdown with high power ultrasound (HPU) propagation in a volume of dielectric fluid towards a component and so peening. The electrical conductor (1, 41, 51) ensures that there is limited possibility of electrical discharge to the component (6, 46, 51) surface whilst the positioning of the wire (1, 41, 51) relative to the surface can be adjusted to achieve best effect particularly if reflector (5) devices are utilised to concentrate (HPU) pulse presentation to the component (6, 46, 56). Furthermore, the component (6, 46, 56) can be surface treated in order to provide protection from potentially damaging emissions from evaporation and electrical discharge to the wire (1, 41, 51).