Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Quantification of condition monitoring benefit for offshore wind turbines

McMillan, D. and Ault, G.W. (2007) Quantification of condition monitoring benefit for offshore wind turbines. Wind Engineering, 31 (4). pp. 267-285. ISSN 0309-524X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Condition monitoring (CM) systems are increasingly installed in wind turbines with the goal of providing component-specific information to wind farm operators, theoretically increasing equipment availability via maintenance and operating actions based on this information. In the offshore case, economic benefits of CM systems are often assumed to be substantial, as compared with experience of onshore systems. Quantifying this economic benefit is non-trivial, especially considering the general lack of utility experience with large offshore wind farms. A quantitative measure of these benefits is therefore of value to utilities and operations and maintenance (O & M) groups involved in planning and operating future offshore wind farms. The probabilistic models presented in this paper employ a variety of methods including discrete-time Markov Chains, Monte Carlo methods and time series modelling. The flexibility and insight provided by this framework captures the necessary operational nuances of this complex problem, thus enabling evaluation of wind turbine CM offshore. The paper concludes with a study of baseline CM benefit, sensitivity to O & M costs and finally effectiveness of the CM system itself.