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• Introduction
• Incoherent OCDMA
• Enhancing performance with all-optical signal processing 

– MAI suppression
– Improving security
– Improving system power budget
– increasing number of simultaneous users
– Increasing scalability and spectral efficiency with M-ary encoding

• Experimental results
• Conclusions
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2D Wavelength-Hopping Time-Spreading Codes

Incoherent OCDMA based on 2D prime codesIncoherent OCDMA based on 2D prime codes

• Codes generated by simple one-line algorithm:

w = weight: # of wavelengths    
p = code length: # of chips                        
i = code number

for   j = 0: w-1  
code(i +1, j +1) = mod(j * i, p) +1
End

1                                         p

λ1

λw

Bit Interval

Time [ps]

Example: (4,11) 2D-WHTS

• Analytical expression for upper bound on BER
•• The code scheme uses picosecond pulses at multiple wavelength to generate codes

multi wavelength low jitter picosecond laser is neededmulti wavelength low jitter picosecond laser is needed



Experimental set up to study laser coherence

Multiwavelength ps laserMultiwavelength ps laser

)cos(2 2121 δφIIIIItot ++=Interferometric equation:

4I0

2I0

“same” pulse interaction
Pulse is coherent with “itself”

“pulse to pulse” separation
NO interference is observed

Experimental results:

- 1.6 ps near transform-limited pulses efficiently utilize bandwidth 
- Turn-key operation (< 40 fs timing jitter)
- High output power (15 dBm per wavelength)
- Low coherence



OCDMA Transmitter transmitting 2DOCDMA Transmitter transmitting 2D--WHTS codesWHTS codes
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Receiver diagramReceiver diagram
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From
Network

Electronic
Data bit 

“1”

λ
De
M
U
X

M
U
X

D-1

D-1

D-1

D-1

D  =  reconfigurable optical delay lines

PDPD

D-1 = indicates  “inverse” delay  in reference to the delays D in the Transmitter

Decoded signal:  Data bit “1”
Cross-correlation signal
from multiple users

τchip τPD

2D-code

τPD < τchip



OCOC--48 OCDMA Princeton48 OCDMA Princeton’’s Testbeds Testbed

• OC- 48 data rate
• 4 Transmitters
• 1 Tunable Receiver/Decoder

2D (4,101) WHTS codes
(4 wavelengths, 101 chips)



Control InterfaceControl Interface



Performance Performance –– with 4 simultaneous userswith 4 simultaneous users
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Multi access interference (MAI) penalty is evident 



Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4

Performance of each userPerformance of each user

PD: HP OC-48 Receiver
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TOAD TOAD --Terahertz Optical Asymmetric DemultiplexerTerahertz Optical Asymmetric Demultiplexer

Glesk et. al., "Demonstration of All-Optical Demultiplexing of TDM Data at 250 Gb/s," Electronics Letters 30, 339 (1994) 

Switching Window
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• Picosecond all-optical gating
• Low control pulse energy ~500fJ
• High SNR  (BER < 10-9)
• Was integrated
• 6 dB gain

TOAD Properties
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Switching Window is a Function of SOA DisplacementSwitching Window is a Function of SOA Displacement
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Glesk et. al., "Polarization Insensitive Terabit Optical Demultiplexers,"  Proc. SPIE 2481, p. 13 (1995). Invited paper 
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TOADTOAD--based receiver demonstrationbased receiver demonstration

TOADTOAD––based OCDMA Receiverbased OCDMA Receiver

OCDMA Receiver OCDMA Receiver –– NO Time GatingNO Time Gating

Achieved
BER < 10-9



Performance improvement with allPerformance improvement with all--optical time gatingoptical time gating
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Special features:
• Multi-level Security for users

• Implemented  One-time Pad in optical domain to secure data

In collaboration with Lockheed Martin 
- OCDMA based 
- bus network architecture

Secure communication platform Secure communication platform 
for avionics applicationsfor avionics applications
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I. Glesk, et al, “OCDMA platform for avionics applications,” Electronics Letters 42 (19) 1115-1116 (2006)



Concept of OneConcept of One--time Padtime Pad
Electronic XOR

Problems:
– RF signature radiation which may be 

vulnerable to side channel attacks
– Electronic speed limited to a few GHz

Optical layer XOR
Advantages:
– Encoded data never exists in electronic 

form
– No RF signature is generated

Data Data KeyKey XOR OutXOR Out
0 0 0
0 1 1
1 0 1
1 1 0

Traditional electronic XORTraditional electronic XOR

Novel optical approachNovel optical approach

I. Glesk et. al, “Improving Transmission Privacy Using Optical Layer XOR,” CLEO/IQEC, 2007, paper CThBB6.



Dual-code transmitter
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Experimental demonstrationExperimental demonstration
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When D does no code swap: One-time Pad OFF
– EVE can eavesdrop with good performance (red diamonds)

When D does code swap: One-time Pad ON
– EVE cannot eavesdrop, data cannot be received, 

no BER can be obtained

With code swapping no BER 
could be obtained on 

eavesdropper channel
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Path to miniaturizationPath to miniaturization
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Path to miniaturization through integrationPath to miniaturization through integration



Top View of Integrated Encoder

HBRHBR--based Dual code Encoder/based Dual code Encoder/DecoderDecoder

Single device can process two 2D codes simultaneously 
including wavelength selection

0

λ1   λ2 λ3

λ1      λ2 λ3

500 ps

code0 (1,2,3)

code1 (1,3,5)

HBR Dual Encoder HBR Dual Decoder



Scaling OCDMA systems 
with multilevel encoding



PrincetonPrinceton’’s OCDMA testbed to demonstration Ms OCDMA testbed to demonstration M--ary encodingary encoding



MM--ary conceptary concept

• Motivation:
– Higher spectral efficiency 

M-ary sends multiple bits of information  per one symbol transmitted
• How?

– Uses pulse positioning (PPM)
– Needs all-optical method for symbols decoding at high data rates

• We implemented M-ary with 4 levels
– Hardware can operate at a lower rate
– Converts 10Gb/s rf data to 5Gsymbol/s  M-ary



• We implemented M-ary modulation with 4 levels
– Increases number  chips in code sequence by converting 10Gbps data to M-ary at 5G 

(each M-ary symbol contains 2 bits of information)
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PPM M-ary encoding architecture and 
symbol correspondence 

C-S. Brès et al, “Novel M-ary Architecture for Optical CDMA using Pulse Position Modulation,” IEEE LEOS Sydney, Australia, 2005, paper ThBB1
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Experimental ResultsExperimental Results

• Encoded M-ary data:
– 1 pulse per symbol ( 00, 01, 10 or 11) 

within 200ps

• Decoded M-ary data:
– Original 10Gb/s data recovered
– Pulses equally spaced every 100ps

Decoded M-ary data
200ps

[01] [11]     [11] [10][11] [00]     [00]     [00]

200ps

0   1 1    1    1    1 1    0 1    1 0   0   0   0   0   0

Encoded M-ary data

• Eye patterns:
– Random superposition of the 4 PPM slots: 

4 eyes within 200ps, 50ps apart
– Recovered pattern: 10Gb/s eye

Eye before decoding        Eye after decoding

Symbol interval

100ps

Bit interval

[01]    [00]   [10] [11]

50ps

M-ary decoding



Additional AllAdditional All--optical signal processing is addedoptical signal processing is added
Before OCDMA decoder      After OCDMA decoder       After TOAD time gating

Experimental BER for Tx3 for 1 to 8 user case Comparison of theory and experiment
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Management of Optical CDMA Ring



Add/Drop Code Multiplexers for OCDMA Ring NetworkAdd/Drop Code Multiplexers for OCDMA Ring Network

1. Ring with code add/drop, code lives only between add / drop points
• Avoids interception of data by downstream nodes
• Code can be reused in separate parts of ring
• Enables scaling size of ring by code re-use

2. Full interconnection possible without switching
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Topology of Self-Healing OCDMA Node with Distributed Processing

SW1

Data link
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Data link
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protection 

circuit

Each node monitors the integrity of fiber optic link in both directions.
Protection switches SW1 & SW2 reroute the data if a node/link failure is detected.

Add/Drop Code in OCDMA Ring NetworkAdd/Drop Code in OCDMA Ring Network



Demonstration of code removal from OCDMA ringDemonstration of code removal from OCDMA ring
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Brès et al., IEEE Photon Tech Lett VOL. 17, No. 5, MAY 2005
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ConclusionConclusion
• OCDMA system improvements through all-optical signal processing 

– 2ps time gating was used  
• it significantly increased number of simultaneous users
• improved  system’s power budget

– Implementation of One-time Pad in optical transport layer was developed and 
demonstrated

– multilevel data security achieved in the system

• Developed and demonstrated M-ary coding scheme to increase scalability and 
spectral efficiency
– PPM M-ary approach was developed for use with  OCDMA transmitters and receivers 

using 2D-WHTS codes
– The approach relaxes hardware and coding constraints 

• OCDMA ring network architecture was investigated 
– All-optical signal processing was implemented to manage codes

• A novel OCDMA “code drop” filter was developed and demonstrated
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