A refined genetic algorithm for accurate and reliable DOA estimation with a sensor array
Li, M. and Lu, Y. (2007) A refined genetic algorithm for accurate and reliable DOA estimation with a sensor array. Wireless Personal Communications, 43 (2). pp. 533-547. ISSN 0929-6212 (https://doi.org/10.1007/s11277-007-9248-5)
Full text not available in this repository.Request a copyAbstract
Maximum likelihood (ML) direction-of-arrival (DOA) estimation algorithm is a nearly optimal technique. In this paper, we present a modified and refined genetic algorithm (GA) to find the exact solutions to the complex, multi-modal, multivariate and highly nonlinear likelihood function. With the newly introduced features such as intelligent initialization and the emperor-selective mating scheme, carefully selected crossover and mutation operators, and fine-tuned parameters such as the population size, the probability of crossover and mutation, the GA-ML estimator achieves fast global convergence. The GA-ML estimator has been compared with various DOA estimation methods in a variety of scenarios, and the simulation results demonstrate that in most scenarios the proposed GA-ML estimator is the fastest and its performance is the best among popular ML-based DOA estimation methods.
-
-
Item type: Article ID code: 14693 Dates: DateEventOctober 2007PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Strathprints Administrator Date deposited: 26 Jul 2011 10:27 Last modified: 08 Apr 2024 16:59 URI: https://strathprints.strath.ac.uk/id/eprint/14693