
Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Mathematical morphology and applications in automated sunspot detection

F. Watson¹, S. Marshall² and L. Fletcher¹

¹ Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, U.K.
Email: f.watson@astro.gla.ac.uk, l.fletcher@astro.gla.ac.uk
² Department of Electrical and Electronic Engineering, University of Strathclyde, Glasgow, G1 1XW, U.K.
Email: s.marshall@eee.strath.ac.uk

Mathematical morphology : the basics
Mathematical morphology in image processing allows the shapes and structures in images to be used as tools in analysis. It was developed with binary images by Matheron (1975) and Serra (1982) but has been extended to include grayscale and colour. The two most basic operations are erosion and dilation. A shape called a structuring element must be chosen to probe the image with: we use a circle in this poster.

Erosion
Removes protrusions from a shape or structure.

Dilation
- Dual to erosion.
- Equivalent to rolling structuring element around outside of the shape and marking centre of the circle.
- Example in Figure 2.

Opening and the top-hat transformation
From the erosion and dilation operators, a number of other operators can be formed. One of these is the opening operator (an erosion followed by a dilation). The benefit of this is that by using both basic operators, the general size of the original shape is preserved but certain regions can be removed.

The top-hat transformation is defined as the opening of an image subtracted from the image itself and it is this that is of use in sunspot detection. Figure 3 gives an example of this using a single row of pixels from a SOHO MDI continuum image.

Sunspot detection
The problems with detecting sunspots in an automated way are more related to the surrounding areas than the spots themselves. The spots appear clearly on images as dark regions however thresholding is not an option as the Sun itself becomes dark near the limbs. So a method which can take the local background into account was required. The top-hat transformation can provide a solution and is also the subject of work undertaken by Curto, Blanca and Martinez (2008).

Figure 3 : (top left) original image inverted. (top right) original processed by erosion. (bottom left) opening of original image (erosion followed by dilation). (bottom right) subtraction of opened image from original image with spot peaks clearly visible. Intensity is measured pixel counts.

Discussion
The speed of the method allows large numbers of SOHO MDI continuum images to be analysed in a short space of time. The rate has been calculated at between 20,000 and 22,000 images per day given reasonable processing power. Accuracy of the top-hat transformation in sunspot detection was determined using a series of ‘ground truth’ images, dated from January 1998 to October 2002, in which a human observer had marked pixels judged to be part of a sunspot.

Of the pixels marked, 77% of them were picked up by the top-hat transformation and mathematical morphology allows those areas to be used as markers to recover the whole spot area again.

Figure 4 : example of the top-hat transformation. Original image on the left and processed image on the right.

The example in Figure 3 gives the processed image in Figure 4. The locations of the sunspots can be clearly seen and their location and areas can be easily recorded. A major advantage of the method is speed, with a full image being processed and all spots recorded in less than 4 seconds.

Accuracy of the top-hat transformation in sunspot detection was determined using a series of ‘ground truth’ images, dated from January 1998 to October 2002, in which a human observer had marked pixels judged to be part of a sunspot.

Of the pixels marked, 77% of them were picked up by the top-hat transformation and mathematical morphology allows those areas to be used as markers to recover the whole spot area again.

Table 1: Image processed by top-hat transformation

<table>
<thead>
<tr>
<th>Image</th>
<th>Pixels marked by observer</th>
<th>Pixels marked by top-hat transformation</th>
<th>False pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>682</td>
<td>549</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>3700</td>
<td>3030</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>783</td>
<td>589</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>426</td>
<td>283</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>2449</td>
<td>1704</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>1014</td>
<td>873</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>2021</td>
<td>1434</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>1991</td>
<td>1566</td>
<td>38</td>
</tr>
<tr>
<td>Totals</td>
<td>13076</td>
<td>10078</td>
<td>400</td>
</tr>
</tbody>
</table>

Also, of the pixels marked by the transformation, 4% were false positives. These were enhancements to detected spots as opposed to new spot areas being incorrectly formed. Finally, 100% of sunspots present were detected.

We acknowledge the support of a Synergy partnership grant. All solar images shown are from SOHO/MDI data which is a collaboration between NASA and ESA and is a project of the Stanford-Lockheed Institute for Space Research.

