
This version is available at https://strathprints.strath.ac.uk/14629/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Application Driven Petabit Optical Networking

Ivan Andonovic, Ivan Glesk, Craig Michie
University of Strathclyde
CIDCOM, Dept. of Electronic and Electrical Engineering

Dimitra Simeonidou, Ian Henning, David Hunter, Reza Nejabati
University of Essex
School of Computing Science and Electronic Engineering

Ralph Spencer, Simon Garrington
University of Manchester
School of Physics and Astronomy, Jodrell Bank Centre for Astrophysics
Outline

• Background
• Optical Networks - State-of-the-Art
 - SDH/SONET
 - Wavelength Division Multiplexing (WDM)
 - Gigabit Ethernet (GbE)
• Optical Time Division Multiplexing (OTDM)
• ADAPTNet
• Conclusions
Background
Drivers

- network traffic will escalate dramatically to support multi-Zettabytes of data annually by 2015 (multi-million million billion bytes)
 - consumer applications
 - YouTube, IPTV, high-definition images, HDTV
 - 3D games, virtual worlds and photorealistic tele-presence
 - cloud computing
 - specialized applications
 - e-Science
 - shared instrumentation infrastructures and large remote sensors
 - content distribution
 - grid computing
 - ultra-high resolution media distribution
New Wave of Applications

A. Lightweight users, browsing, mailing, home use
B. Business applications, multicast, streaming, VPN's,
C. Scientific applications, distributed data processing/storage, all sorts of grids/clouds. Need very fat lambdas, limited multiple Virtual Organizations, few to few,

ΣA ≈ 40 Gb/s
ΣB ≈ 100 Gb/s
ΣC >> 1 Tb/s

Source: de Laat, University of Amsterdam
Network Layers

Optical Fibre Only

Fibre + Wireless
Optical Networks: State-of-the-Art
Transmission Medium; Optical Fibre

The diagram illustrates the waveforms and characteristics of optical fibres, including dispersion and attenuation properties at different wavelengths. Key points include:

- **2nd window**: 1310 nm, 15 THz (85 nm), A<0.35 dB/km
- **3rd window**: 1550 nm, 15 THz (120 nm), A<0.2 dB/km

The diagram also shows the comparison between different fibre types and amplifier technologies, such as FRA, FBA, TWA, and EDFA.
Optical Networking: Transparency

- allows format independence
 - flexibility for new traffic types
- minimizes the equipment in the signal path
 - cost advantage
TDM/WDM

- **Time Division Multiplexing (TDM)**

- **Wavelength Division Multiplexing (WDM)**
Capacity Upgrades

Fibre aggregate capacity

- Spectral Window
 - Transmission Fibre 100nm
 - Er3+ Doped Fibre Amplifier 32nm
 - New Amplifiers

- TDM
 - 10Gbit/s
 - 40Gbit/s
 - Higher rates

- WDM
 - 200GHz
 - 100GHz Denser grids

Fibre window
- 1500 nm to 1600 nm
- 13THz

Fibre window
- 1280 nm to 1320 nm
- 7THz

EDFA window
- 1530 nm to 1560 nm
- 4THz

Extended EDFA
- 1530 nm to 1600 nm
- 9THz
History

140Mbit/s - 2.5Gbit/s
- InP Lasers / Detectors

2.5Gbit/s - 10Gbit/s
- Er3+ Fibre Optical Amplifier

Bi-directional WDM
2-4xOC48, 2-4xOC192
5Gbit/s - 20Gbit/s
- Coarse WDM - Filters

Uni- and Bi-directional D-WDM
16xOC48, 16xOC192
40Gbit/s - 160Gbit/s
- Precision Sources - Precision Mux/Demux - ITU grid
SONET/SDH; History

- **Synchronous Optical Network - SONET**
 - North American Standard (ANSI)

- **Synchronous Digital Hierarchy - SDH**
 - International Telecommunications Union (ITU)
 - SONET, Synchronous Transport Signal, STS1 = 51.84 Mb/s
 - SDH, Synchronous Transport Module, STM1 = 155.52 Mb/s
 - Optical Carrier
 - OC3 = 3 x STS 1 = STM 1 = 155.52Mbit/s
 - OC12 = 12 x STS 1 = STM 4 = 622.08Mbit/s
 - OC48 = 48 x STS 1 = STM 16 = 2.488Gbit/s
 - OC192 = 192 x STS 1 = STM 64 = 9.953Gbit/s
 - OC768 = 768 x STS 1 = STM 256 = 39.813Gbit/s
Optical Amplifier/WDM Revolution

Repeater without optical amplifier

Repeater with optical amplifier

All optical network

Repeater

Receiver

Transmitter

S

S

Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx
Optical Amplifier/WDM Revolution

Conventional Transmission - 10Gbit/s

Optical Amplifiers and WDM - 10 Gb/s

4 fibers → 1 fiber; 12 regenerators → 1 optical amplifier

cidcom
Technology Issues:
Next Generation WDM systems

- Closer channel spacing
- More channels
 - Improved optical amplifiers
 - tighter power (pump lasers)
 - wider bandwidth
- Higher speeds (40 Gb/s)
 - Dispersion compensation
 - in amplifiers?
Simpler Layered Model

Service Layers (IP, Ethernet, ...)

Open OC-48 (2.5 Gb/s)

Proprietary (20-40 Gb/s)

Optical Layer

Media Layer
Optical Layer:
Format-Independent Platform

- direct interconnection of IP or Ethernet or …
- allow provisioning and restoration to be removed from the data networking layer
- provide a flexible infrastructure for packet-based networks while still supporting legacy e.g. SONET formats
- optical network expansion beyond WDM
 - higher bitrates per wavelength through optical time division multiplexing (OTDM)
 - optical networks supporting burst or packet based transmission
Ethernet; History

- developed at Xerox from 1973-1975, widely used since 1980
- largely replaced other LAN standards by “leapfrogging” competing developments such as Token ring, FDDI etc.
- originally based on CSMA/CD protocol broadcasting over a shared coaxial cable at 10Mbit/s
 - uses globally unique 48bit Ethernet interface addresses
 - fits into data link layer of OSI model (layer 2)
- later versions developed using twisted-pair cable with RJ45 connectors or optical fibre
 - 100Mbit/s Ethernet (Fast Ethernet)
 - 1Gbit/s Ethernet (Gigabit Ethernet)
 - 10Gbit/s and 100Gbit/s versions do not use CSMA/CD
 - point-to-point operation only, interconnecting Ethernet switches
 - CSMA/CD is inefficient for high data rates
- all versions of Ethernet are based on the original 10Mbit/s frame format
- recently, “Carrier class” extensions to the protocol have been developed so that Ethernet can be used as a cost-effective replacement for SDH
10G and 100G Ethernet

• 10Gbit/s Ethernet provides point-to-point connectivity between Ethernet switches, with CSMA/CD disabled
 - standardised as IEEE 802.3ae in 2002
 - LAN PHY – most common implementation, supporting existing Ethernet LAN applications; 2 × optical fibres, multimode (300 m) or single mode (10km)
 - WAN PHY – allows 10Gbit/s Ethernet terminals to be connected through 10Gbit/s SDH/SONET; 2 × single-mode optical fibres, up to 40km
 - Both LAN PHY and WAN PHY can use the same optics
 - Twisted pair operation also available over shorter distances
• 100Gbit/s Ethernet standard (IEEE 802.3ba) is due to be approved in June 2010; operation over
 • at least 40km on single-mode fibre (4 wavelengths carrying 25Gbit/s each)
 • at least 100m on multi-mode fibre
 • at least 10m on copper cable
 - a 100Gbit/s prototype Ethernet switch was demonstrated by Nortel in 2008
SONET/Ethernet Converge
Lightwave Technology Eras

Year

Capacity (Gb)

10000
1000
100
10
1
0.1

Fiberization
Digitization

Research Systems

Commercial Systems

Multi-wavelength transmission to meet capacity requirements

SONET

Optical networking for increased functionality

Optical Internetworking

University of Essex

Centre for Intelligent Dynamic Communications
Optical Time Division Multiplexing (OTDM)
Bandwidth Bottleneck?

- 10Tbit/s
- 100Gbit/s
- 10Gbit/s
- 1Gbit/s
- 100GE (100Gb/s)
- OC-192 (40Gb/s)
- OC-768 (100Gb/s)
- OC-48 (2.5Gb/s)
- OC-12
- OC-3
- OC-1

Limit of Current Electronic Switching

All-optical Approach

Commercial Systems (Single Channel data rates)

OTDM
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N × 1 → 1 × N

Rx-1 → DeMux
Rx-2 → DeMux
Rx-N → DeMux

University of Essex

Centre for Intelligent Dynamic Communications

University of Strathclyde
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N x 1

1 x N

Rx-1
Rx-2
Rx-N

DeMux

University of Essex

cidcom
Centre for Intelligent Dynamic Communications
OTDM

Tx-1 → TDL → N x 1 → 1 x N → Rx-1
Tx-2 → TDL → N x 1 → 1 x N → Rx-2
Tx-N → TDL → N x 1 → 1 x N → Rx-N

DeMux

University of Essex
Centre for Intelligent Dynamic Communications
MANCHESTER 1824
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N X 1

1 x N

DeMux

Rx-1
DeMux

Rx-2
DeMux

Rx-N
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N x 1

1 x N

Rx-1
Rx-2
Rx-N
OTDM

Tx-1 → TDL → N X 1 → 1 x N → Rx-1
Tx-2 → TDL → N X 1 → 1 x N → Rx-2
Tx-N → TDL → N X 1 → 1 x N → Rx-N

DeMux

University of Essex

Centre for Intelligent Dynamic Communications

University of Strathclyde Engineering

MANCHESTER 1824
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

TDL → NX1 → 1xN

DeMux

Rx-1 → DeMux
Rx-2 → DeMux
Rx-N → DeMux
OTDM

TxD-1 → TDL

TxD-2 → TDL

TxD-N → TDL

N x 1 → Demux → 1 x N

Rx-1

Rx-2

Rx-N
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N x 1 → 1 x N

Rx-1 → DeMux
Rx-2 → DeMux
Rx-N → DeMux
OTDM
OTDM

Tx-1 → TDL
Tx-2 → TDL
Tx-N → TDL

N x 1

1 x N

Rx-1
DeMux
N 2 1

Rx-2
DeMux
N 2 1

Rx-N
DeMux
N 2 1

OTDM

University of Essex

Centre for Intelligent Dynamic Communications

MANCHESTER 1824
OTDM; Transmitter

Transmitting to Channel 2

Time Slot Control Signals

<table>
<thead>
<tr>
<th>Tx 2</th>
<th>Time Slot Control Signals</th>
<th>RF Data</th>
<th>Transmit to Time Slot #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 0 1</td>
<td></td>
</tr>
</tbody>
</table>

ps Pulsed Laser → Data Modulator → Time Slot Tuner → To Nx1 Combiner

University of Essex

Centre for Intelligent Dynamic Communications

CIDCOM

MANCHESTER 1824
OTDM; Transmitter

Transmitting to Channel 2

- **ps Pulsed Laser**
- **Data Modulator**
- **Time Slot Tuner**
- **Tx 2**
- **Time Slot Control Signals**
- **RF Data**
- **Transmit to Time Slot #2**

To Nx1 Combiner
OTDM; Transmitter

Transmitting to Channel 2

Tx 2

Time Slot Control Signals

RF Data

Transmit to Time Slot #2

RZ Format

ps Pulsed Laser

Data Modulator

Time Slot Tuner

To Nx1 Combiner

University of Essex

cidcom

Centre for Intelligent Dynamic Communications

University of Strathclyde Engineering

MANCHESTER 1824
OTDM; Transmitter

Transmitting to Channel 2

- **Tx 2**
 - Time Slot Control Signals
 - RF Data

- **ps Pulsed Laser**
 - Data Modulator
 - Time Slot Tuner

- **Transmit to Time Slot #2**
 - RZ Format

- **To Nx1 Combiner**
OTDM; Transmitter

Transmitting to Channel 2

Ps Pulsed Laser
Data Modulator
Time Slot Tuner

Tx 2

Time Slot Control Signals
RF Data

Transmit to Time Slot #2

RZ Format

TO Nx1 Combiner
OTDM; Transmitter

Transmitting to Channel 2

Ps Pulsed Laser -> Data Modulator -> Time Slot Tuner

Time Slot Control Signals
RF Data

Transmit to Time Slot #2

RZ Format

To Nx1 Combiner

University of Strathclyde Engineering
University of Essex
Centre for Intelligent Dynamic Communications
OTDM; Transmitter

Transmitting to Channel 2

- **Pulsed Laser**
- **Data Modulator**
- **Time Slot Tuner**

Time Slot Control Signals

RF Data

Transmit to Time Slot #2

RZ Format

- **Tx 2**
- **To Nx1 Combiner**
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Aggregate Data

Clock & Data Separation

Time Slot Tuner

Tb/s All Optical Switch

Demuxed Data channel 2

Time-Shifted Clock
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Data

Aggregate Data

Clock & Data Separation

Time Slot Tuner

T

Tb/s All Optical Switch

Demultiplexed Data channel 2
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Aggregate Data

Clock & Data Separation

Time Slot Tuner

Data

Time-Shifted Clock

Tb/s All Optical Switch

Demultiplexed Data channel 2
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Clock & Data Separation

Time Slot Tuner

Data

Time-Shifted Clock

Tb/s All Optical Switch

Demultiplexed Data channel 2
Demultiplexing data from Channel 2

- **Aggregate Data**
- **Clock & Data Separation**
- **Time Slot Tuner**
- **Data**
- **Time-Shifted Clock**
- **Tb/s All Optical Switch**
- **Demultiplexed Data channel 2**

OTDM; Self Clocked Receiver
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Clock & Data Separation

Time Slot Tuner

Tb/s All Optical Switch

Demultiplexed Data channel 2
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Clock & Data Separation

Time Slot Tuner

Tb/s All Optical Switch

Demultiplexed Data channel 2
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Aggregated Data → Clock & Data Separation → Time Slot Tuner → Time-Shifted Clock → Tb/s All Optical Switch → Demultiplexed Data channel 2
OTDM; Self Clocked Receiver

Demultiplexing data from Channel 2

Clock & Data Separation

Aggregated Data

Time Slot Tuner

Data

Time-Shifted Clock

Tb/s All Optical Switch

Demultiplexed Data channel 2
ADAPTNet
ADAPTNet

Physical Layer (Transmission)

Routing

Signalling

Discovery

Service Plane (Application)

Application Connectivity Management

Resource Allocation, Scheduling, QoS

Application Interface Network Management

Network Control

User

University of Essex

Centre for Intelligent Dynamic Communications
Solution

- multi and cross-layer solution
 - physical layer
 - >100GBit/s per channel and >1TBit/s per fibre
 - control and management plane
 - understanding of application requirements and on-demand/dynamic
 - application to network interface
 - hide network complexity and connectivity provisioning process
Solution

- Carrier Class Ethernet
 - Ethernet standard for data rates higher than 10Gbit/s is already the subject of intensive development
 - 40Gbit/s and 100Gbit/s Ethernet Task Force (ETF)
 - pre-standards equipment being available commercially in 2009

- 100Gbit/s Ethernet will provide an off-the-shelf solution in the future
 - consumer based i.e. HDTV, SHDTV

- Other applications require higher data rates and support demanding quality of service (QoS) levels
 - E-science e.g. radio astronomy, UHD multimedia
 - research is already under way on Ethernet operating at 640Gbit/s which will doubtless become the focus of future standardization activities

- Ethernet is inherently packet-based, while high performance applications
OTDM

- circuit-switched OTDM approach can adapt naturally to high-end application requirements for flexible capacity and QoS

- OTDM can offer an extra dimension to capacity upgrades
 - utilising the time dimension in the optical domain for capacity upgrades reduces the transponder complexity
 - proven ability to scale to ever higher single-channel data rates for serial ultrahigh capacity transport

- main drivers for migrating to higher single channel rates are
 - better utilization of the optical fibre
 - conservation of router ports and lowering of the network management overhead
 - factors will continue to drive the bit rate per channel higher to many 100’s of Gbit/s
Service Provisioning

- applications to set up their own virtual network in an on-demand manner
- efficient and on-demand bandwidth provisioning mechanism
- network resource virtualization mechanism that decouples service delivery from bandwidth and protocol engineering
- protocols for point-to-point, point-to-multipoint and multipoint-to-point operation
New Networking Paradigm

Application requirements
End-user requirements
Service requirements

Service Plane
Control Plane
Network Elements

• Application requirements
• End-user requirements
• Service requirements

User
WDM-OTDM
Network Elements

University of Essex
Centre for Intelligent Dynamic Communications

University of Strathclyde
Engineering
Conclusions; Network Requirements

• a dynamic ultra high-speed platform that serves different types of bandwidth intensive application seamlessly
• scalability; a solution beyond the current or emerging Ethernet and other optical transport developments
• supports the granularity requirements of individual applications
• supports end-to-end quality of service performance requirements for different types of applications
• offers application perceived network dynamics without necessarily requiring a fully dynamic optical layer; this function will be provided by the service plane
• maintains compatibility with other mainstream solutions e.g. Ethernet
• capable of deploying new applications quickly and efficiently, presenting minimal complexity to the user