Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Semi-analytical solution for the optimal low-thrust deflection of near-Earth objects

Colombo, Camilla and Vasile, Massimiliano and Radice, Gianmarco (2009) Semi-analytical solution for the optimal low-thrust deflection of near-Earth objects. Journal of Guidance, Control and Dynamics, 32 (3). pp. 796-809. ISSN 1533-3884

[img]
Preview
Text (strathprints014571)
strathprints014571.pdf
Accepted Author Manuscript

Download (5MB)| Preview

    Abstract

    This paper presents a semi-analytical solution of the asteroid deviation problem when a low-thrust action, inversely proportional to the square of the distance from the sun, is applied to the asteroid. The displacement of the asteroid at the minimum orbit interception distance from the Earth's orbit is computed through proximal motion equations as a function of the variation of the orbital elements. A set of semi-analytical formulas is then derived to compute the variation of the elements: Gauss planetary equations are averaged over one orbital revolution to give the secular variation of the elements, and their periodic components are approximated through a trigonometric expansion. Two formulations of the semi-analytical formulas, latitude and time formulation, are presented along with their accuracy against a full numerical integration of Gauss equations. It is shown that the semi-analytical approach provides a significant savings in computational time while maintaining a good accuracy. Finally, some examples of deviation missions are presented as an application of the proposed semi-analytical theory. In particular, the semi-analytical formulas are used in conjunction with a multi-objective optimization algorithm to find the set of Pareto-optimal mission options that minimizes the asteroid warning time and the spacecraft mass while maximizing the orbital deviation.