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 Abstract- This paper presents the results from integrating a 

low-power partial discharge detector with a wireless sensor 

node designed for operating as part of an IEEE 802.15.4 sensor 

network, and applying an on-line classifier capable of 

classifying partial discharges in real-time.  

Such a system is of benefit to monitoring engineers as it 

provides a means to exploit the RF technique using a low-cost 

device while circumventing the need for any additional cabling 

associated with new condition monitoring systems. 

The detector uses a frequency-based technique to 

differentiate between multiple defects, and has been integrated 

with a SunSPOT wireless sensor node hosting an agent-based 

monitoring platform, which includes a data capture agent and 

rule induction agent trained using experimental data. The 

results of laboratory system verification are discussed, and the 

requirements for a fully robust and flexible system are outlined. 
 

Index Terms-- Partial discharges, UHF measurements, 

substations, monitoring, wireless sensor networks, multi-agent 

systems, decision support systems. 
 

I. INTRODUCTION 

 

Partial discharge (PDs) monitoring has been proven as an 

invaluable tool in determining the state of electrical plant, 

which, due to regulatory and financial constraints on 

electricity utilities has become an area receiving significant 

research in recent years. 

Partial discharges arise when a breakdown in the dielectric 

insulation occurs within electrical plant, and can indicate the 

presence of faults long before equipment failure occurs. A 

number of established detection techniques have been 

developed, such as IEC60270, RF and acoustic, as well as a 

number of different analysis techniques.  

This paper discusses the embedded software and hardware 

architecture for a battery-operated partial discharge detector 

based upon the RF method [1], which uses a frequency-based 

technique to detect partial discharge emissions. The platform 

is based around a SunSPOT wireless sensor node [2] that 

captures the spectral energies of RF PD emissions in 

different bands and is able to classify them using a decision 

tree generated from the C4.5 algorithm.  

CIGRE has recently published a report outlining facilities 

for power transformer CM systems [3], recommending that 

the level of condition monitoring applied to plant should be 

based upon asset value. A low-cost PD detector would allow 

RF monitoring to be economically viable on lower-valued 

assets where the RF technique would not otherwise be 

considered. Such a system is intended for use as part of a 

larger condition monitoring sensor network, which would 

consist of multiple low-power wireless sensors. 
 

II. BACKGROUND 

 

A. Partial Discharge Monitoring 

 

Previous RF PD monitoring techniques have applied 

wideband signal processing to recorded signals to establish 

both defect type and defect location [4]. This approach has 

successfully been applied to a number of plant items such as 

transformers [5], GIS [6] and HVDC reactors [7], which 

have been known to have defects present, identifying defect 

type and location while the plant item is still online. This 

approach does have certain drawbacks, as it cannot be 

economically deployed across large numbers of plant and 

wideband sampling cannot be carried out on low-power, 

low-cost hardware as the signal processing capabilities 

required are too resource intensive. 

Contin et al. [8] have stated that conventional PD pulse 

measurement equipment ignores the frequency content of 

recorded signals, which may be useful for classification. The 

use of frequency content for classification of wideband PD 

signals has previously been demonstrated [9]. By using a 

frequency-based method with low power hardware, it is 

possible to take advantage of the RF technique without the 

need for wideband signal capture and its associated 

overheads. 

 

C. Wireless Sensor Networks 

 

Recent developments in miniaturisation of digital 

electronics devices have fuelled the development of wireless 

sensor networks (WSNs), which have already seen a number 

of deployments within substations [10-13]. These devices 

offer an integrated computing platform which encapsulates 

sensing, processing, data storage, communications and 

power components in a single compact package. Sensory 

data is transmitted through the sensor network, and passed 

back through data aggregation nodes to a wired network 

where the data is presented to monitoring engineers.  



Wireless sensor networks offer significant advantages over 

wired equivalents. Firstly, wireless sensors do not require 

costly and potentially hazardous cabling throughout a 

substation. Secondly, by analysing monitoring data at the 

source and only transmitting pertinent information, 

bandwidth requirements can be reduced to a manageable 

level, thus reducing the need for expensive high-capacity 

communication links between substations and corporate 

networks. 
 
D. Multi-Agent Systems 

 

The accepted definition of an intelligent agent within the 

Power Engineering community is that of Wooldridge, which 

states that an agent must be: reactive, taking action based 

upon changes in its environment; pro-active, carrying out 

goal-oriented behavior and; socially able, with the ability to 

cooperatively interact with other agents.  A multi-agent 

system is defined as a software system consisting of two or 

more intelligent agents. 

Multi-agent systems (MAS) have been used extensively 

for power engineering applications, in areas including 

monitoring and diagnostics, protection, distributed control, 

and modelling and simulation [14]. Multi-agent systems have 

successfully been applied at the substation level [15], but as 

the need for effective condition monitoring systems 

increases, the need for intelligent monitoring techniques at 

the sensor level increases also. By deploying software agents 

on embedded hardware, data is processed at the source, 

which not only increases the speed at which useful CM 

information can be generated, but also reduces 

communications bandwidth associated with the transmission 

of large amounts of raw data [16].  

MAS technology itself does not provide reasoning 

capabilities for intelligent agents, but instead provides a 

platform on which to integrate intelligent techniques that can 

be used for data analysis and decision-making. Classification 

of data can be carried out using a number of different 

methods: for the application discussed here, rule induction 

was chosen as a suitable technique. 

 

E. Rule Induction 

 

Classification problems are often presented without the 

form of the classes being known a-priori – the shape and 

location of a decision boundary between one class and 

another may be complex and lie outside the problem domain 

knowledge. If a set of representative data is available which 

contains observations that are labelled according to the class 

they belong to, then a supervised learning technique could be 

used to find the class specific decision surface from this data. 

One such technique is Rule Induction, which takes such a set 

of labelled exemplar data and produces decision rules that 

partition the observation space and in doing so describe the 

classes in terms of the range of values that their associated 

observations take. Although there are many rule induction 

techniques that offer trade-offs on inference speed, 

scalability and error rates, one enduring implementation is 

C4.5 [17].  

C4.5 uses the information content of case data to partition 

the observations hierarchically, producing a decision tree 

which branches at particular observation values and 

terminate in leaf nodes when a classification is made. Once 

learned, a decision tree can be converted into a set of rules 

by traversing the path from the root to every leaf, which 

produces an initial set of rules, then removing the 

antecedents that offer little or no classification accuracy. 

During this process, duplicate rules will arise as their distinct 

lists of antecedents are reduced – these are deleted to leave a 

compact set of classification rules. Aside from providing 

automatic classifications, as an alternate technique such as a 

Neural Network might do, rules produced by C4.5 resemble 

the human decision making process and classification are 

hence readable and deterministic. 

 

III. DETECTOR OVERVIEW 

 

A. System Overview 

 

The low-power partial discharge detector (see Figure 1) 

employs a frequency-based technique, capturing the relative 

spectral energies of an RF PD pulse across 3 frequency 

bands (see Figure 2). An RF detector on each channel 

responds to the pulse envelope of the signal, which is then 

captured by peak-hold circuitry to be sampled by an analog-

to-digital converter.  

The detector is connected to a Sun Microsystems 

SunSPOT wireless sensor node, which consists of a 180MHz 

ARM processor, 512KB RAM and 4MB flash memory. The 

device runs an embedded version of the Java programming 

language. 

The PD detector is triggered once the voltage on one of its 

channels reaches the detection threshold voltage. Upon 

triggering, the sensor node samples each of the detector 

channels, and then activates the reset circuit with a pulse, 

which switches each of the peak-held spectral energy 

Figure 1. Low power partial discharge detector with 3 band filters and a 

SunSPOT wireless sensor node. 



voltages to ground. This in turn resets the detector trigger. 

The detector acquisition window is the time between 

detector triggering and the falling edge of the reset pulse. 

This is the minimum time between PD pulses that the 

detector can successfully discriminate. 

 

B. Decision Tree Training 
 

Four high-voltage PD test cells were used to generate the 

test data, which simulate the following defects: floating 

electrode in SF6, rolling particle in SF6, protrusion in SF6, 

and protrusion in air. The defects were connected to a 15 kV 

transformer, and energized at a voltage just above PD 

inception. Results, which can be seen in Figure 3, were 

captured using a 1 Gsample/s oscilloscope. Data was 

collected for each test cell in two different positions, which 

had a noticeable effect on the observed spectra, suggesting 

that frequency content is in part a function of tank geometry. 

However, the dominant factor dictating frequency content 

can be seen to be the type of PD source.  

The C4.5 algorithm was chosen for the application as the 

frequency components of each defect type were seen to be 

directly linearly separable. The training process used 50% of 

the test data for training and 50% for validation, with a 1.1% 

error rate. Upon completion of training, a binary decision 

tree and rules file is created, which can be loaded and 

executed by a suitable decision tree engine. 
 

IV. DETECTOR SOFTWARE ARCHITECTURE 

 

A. Platform Overview 

 

The software system consists of a multi-agent system 

platform developed specifically for the SunSPOT platform, 

hosting a number of software agents for data capture and 

classification, as seen in Figure 4. The agent system has been 

designed to be generic, providing a number of prototype 

agents and behaviors on which to base applications. It is 

extensible and may be used with any suitable sensor type or 

analysis method. The agent container includes two system 

agents: the System Management agent, which controls inter-

node communication and power management, and the 

Directory Agent, which provides a lookup service for agent 

services. 

Two application agents are used for this application, 

although the system can accept new agents, even at runtime 

if necessary. The application agents are described as follows. 

 

B. Data Capture Agent 

 

The data capture agent provides a standard interface to the 

PD detector, receiving sample vectors each time a PD pulse 

is detected. The underlying driver is configured to reset the 

detector each time a PD has been captured, readying it to 

receive the next sample. Upon receiving a new sample, it is 

stored within the agent datastore, at which point it is 

forwarded to the C4.5 classifier agent for classification.  

Depending on the configured behavior of the agent, at this 

point the PD sample could be archived to allow classification 

to be applied in batches. The SunSPOT device has 4 MB of 

flash memory, so if necessary, the order of millions of data 

points may be stored on the device. 

 

Figure 3. Ternary plot showing results from laboratory case study. Defect 

types and other known regions have been highlighted. Plotting in this 
fashion is possible by converting the 3-dimensional frequency component 

data into a 2-dimensional simplex by converting to proportional form.  

 

Figure 2. PD detector block diagram. The raw PD signal is split into 3 

frequency bands which are captured by the sensor node. This is then 
converted to proportional form for analysis. 

 

Figure 4. Embedded software architecture. Two application agents are 

used to capture and process data. Agents can be added when required, 
even when system is deployed. 

 



C. C4.5 Classifier Agent 

 

Partial discharge classification is carried out by a C4.5 

classifier agent. Upon agent instantiation, the decision tree is 

loaded from flash memory, and is ready to start receiving PD 

sample data for classification. The platform supports the 

transmission of decision trees remotely, allowing for the rule 

induction model to be updated, for instance of the decision 

tree has been refined from the addition of new training data. 

Once the decision tree has been loaded, a Partial Discharge 

Classifier service is registered on the local node, which 

accepts PD samples for classification. The capture agent is 

notified of this event, and starts sending partial discharge 

samples to the classifier agent for analysis. Upon receiving 

each sample, the data is classified and a new classification 

result is generated. 

 

V. LABORATORY TESTING AND DISCUSSION 

 

The laboratory test was carried out using the same 

equipment used for the detector development. The aims of 

the test were to establish: (i) the functionality and accuracy 

of the integrated detector, and; (ii) any hardware or software 

optimizations required for proper operation. 

A 'rolling particle in SF6' test cell was placed in an 

enclosed aluminium test tank. The cell was energized at 10 

kV using the HV transformer. The PD detector was attached 

to a ‘disc coupler’ UHF sensor mounted on one wall of the 

test tank. 

Initial results showed that the software system works as 

expected, with the software agents successfully capturing 

and classifying PD emissions. However, the results did not 

immediately correlate with the data captured previously, 

which was found to be due to the operation of the detector 

acquisition process. Analysis of the experimental data has 

led to a number of proposed optimizations to the detector, 

which are described as follows. 

 

A. Detector Input Gating 

 

The detector acquisition window is fundamental to the 

proper functioning of the detector. An example signal trace 

can be seen in Figure 5, which shows a pair of consecutive 

PD pulses and the detector trigger and reset signals. The 

acquisition time, ta, is shown to be before the second PD, 

although if a PD were to occur within the acquisition 

window, the captured PD signals could be superimposed, 

producing a spurious sensor reading. 

During testing, consecutive PDs were occasionally 

overlapping in the detector, causing invalid data to be 

captured. It is therefore necessary for the detector inputs to 

be disabled as soon as a PD has been detected. An input 

enable gate is proposed to avoid collisions, ensuring that PDs 

that occur within the acquisition window of a previous PD 

emission are ignored. The detector inputs should be disabled 

at the rising edge of the sample trigger, and re-enabled at the 

falling edge of the reset pulse.  

 

B. Acquisition Window Optimization 

 

The acquisition window encapsulates a number of chained 

events, each with an associated time period: 1) RF signal 

detection, peak-hold and trigger activation, which is 

governed by the physical detector hardware; 2) signal 

sampling, and; 3) reset pulse generation, which are both 

carried out by the PD detector driver. The acquisition 

window ends at the falling edge of the reset pulse.  

Even if the detector inputs are disabled, pulses occurring 

during the acquisition time will be ignored, so this period 

must be minimized to allow the maximum number of PD 

events to be captured.  The events occurring within the 

acquisition window were therefore investigated to determine 

the scope of optimization.  The mean times for each event 

were captured for 500 PDs, which can be seen in Table 1 

below. 

 
TABLE I 

MEAN ACQUISITION WINDOW EVENT TIMES, RELATIVE TO PD INCEPTION 
 

Event Time ∆t Notes 

t0 PD Inception 0µs 0µs PD detected 

tt Detector trigger fired 4.07µs 4.07µs Sampling starts 

tr Reset pulse fired 28.51µs 24.44µs Sampling ends 

tw Reset pulse end 37.47µs 8.96µs Detector ready 

 

The detector trigger time, tt, is dependent on the physical 

detector circuit so cannot be readily optimized. The largest 

segment of acquisition time is associated with sampling, 

which is governed by the PD detector driver software. 

Therefore, the software must be optimized to ensure that the 

reset pulse is generated as soon as data is captured.  

The reset pulse width was set to the minimum supported 

by the SunSPOT pulse width modulation circuit (PWM), 

which was measured as 8.96 µs. It was found that, for large 

PD, this pulse was not always long enough to permit 

complete resetting of the peak-hold circuitry. This process is 

governed by the time constant of the reset circuit, which also 

needs to undergo optimization through software simulation.  

As the pulse width is at the physical minimum for the 

SunSPOT device, it is also necessary to create an adaptive 

algorithm that generates a reset pulse proportional to the PD 

magnitude. This would work in tandem with the input enable 

gate, so the acquisition window would be proportional to 

magnitude of PD captured.  

Figure 5. Partial discharge detector signal trace. By optimizing the 

acquisition time, the detector can capture partial discharge emissions at a 
greater capture rate. 

 



The optimizations that have been outlined will make the 

PD detector more robust, reducing the possibility for error 

and enabling the system to adapt to different PD magnitudes. 

This will ensure that the detector is suitably robust for field 

trials. 

 

VI. CONCLUSIONS AND FUTURE WORK 
 

 This paper has presented the results of validating an 

integrated low-power partial discharge detector for use 

within a condition monitoring sensor network. The system 

has used a multi-agent system approach to ensure flexibility 

and extensibility, and consists of two agents for data capture 

and classification. A decision tree generated by the C4.5 

algorithm has been generated, and tested within a laboratory 

environment. The system has been tested in a laboratory, and 

initial results have highlighted a number of opportunities for 

optimization within the physical detector and low-level 

software that will make the detector more robust and 

adaptable to different types of PD. 

Future work will involve the application of all the changes 

discussed in this paper, followed by integration with a wider 

range of sensor types and an online server-based multi-agent 

system that is currently deployed in a substation field trial. 

Possible integration of an electromagnetic energy harvesting 

device is also being investigated, to allow the detector to 

operate in the substation environment in a fully autonomous 

manner, free of the practical constraints imposed by cabling 

and batteries. 
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