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The concept of returnability is proposed for complex directed networks (digraphs). 

It can be seen as a generalization of the concept of reciprocity. Two measures of the 

returnability are introduced. We establish closed formulas for the calculation of the 

returnability measures, which are also related to the digraph spectrum. The two 

measures are calculated for simple examples of digraphs as well as for real+world 

complex directed networks and are compared with the reciprocity.  
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The study of complex networks has become an important area of cross+disciplinary 

research [1,2]. Many of real+world complex networks are directional, indicating the 

asymmetric relationship between the entities [1+5]. For instance, many chemical and 

biochemical reactions in metabolic networks are unidirectional [6+8]. In ecological food 

webs, some species predate others in a unidirectional way [9+11] and in social and 

economical networks, some of the relationships in one direction not necessarily means 

that the reverse relation is also present in the network [12,13]. In the Internet at the 

autonomous system (AS) level, a national AS, for example, that provides services to a 

regional AS, which at the same time provides services to a local AS, cannot be also the 

customer of the local AS [14, 15]. This last case is very illustrative of two phenomena, 

the directionality of relationships and the lack of returnable cycles in a complex 

network. The study of directed complex networks have only been put forward in recent 

years as an important direction of research in this field. Despite of its evident 

importance, most of the works in the modelling literature are still concerned with 

undirected networks.  

One property of directed networks that has received recent attention is the 

reciprocity � , which is the proportion of directed links to the total number of links in 

the network [12]. Complex networks have been shown to display the non+random 

presence of reciprocity  [16]. It has also been recently observed that even a small 

reciprocity can change dramatically the properties of percolation in complex networks 

[17]. Moreover, reciprocity has been recognised as a relevant parameter for 

understanding the topology or functionality of certain complex networks [18, 19]. The 

reciprocity has been studied in physics contexts as the multispecies grand+canonical 

models [20] and networks with degree correlations [21]. However, this measure has 
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never been analysed in a wide graph+theoretic context. Here we propose to redefine this 

graph invariant in terms of graph spectral parameters and then generalize it to a wider 

context of graph+theoretic measures for digraphs. In doing so we extend here the 

definition of the ������
������������ index [22] to complex directed networks. 

The subgraph centrality was proposed by one of the present authors (E.E.) to 

account for the participation of a node in all subgraphs of the network, giving higher 

weights to the smaller subgraphs [22]. It is also known in the literature as the Estrada 

index [23+26] of a graph, and have found several applications for the characterization of 

the topology of complex networks [27+29]. 
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We represent by ( )��� ,=  an undirected network, where �  is the set of nodes 

and �  is the set of links. A directed network, or digraph,  , consists of a finite set of  

nodes �  of cardinality !� =#  and a set of 	������ pairs of distinct nodes from � , 

which are called arcs or directed links. The arc 
"  goes from 
  to " . A (directed) 

walk of length � is any sequence of (not necessarily different) vertices 121 ,,,, +�� #### �  

such that for each �� ,,2,1 �=  there is an arc from �#  to 1+�# . A closed walk (CW) of 

length � is a walk in which 11 ##� =+  [30]. A path is a walk in which all nodes are distinct 

and a ����� is a nontrivial closed walk with all nodes (except the first and last) distinct. 

A symmetric pair of arcs is the pair 
"  and "
 . A digraph is ��������� if every arc 


" in the digraph has its symmetric partner "
 . If the presence of 
" in a digraph 

excludes the presence of "
  the graph is called asymmetric [31]. The underlying graph 

( ) �  of the digraph   is the graph that results from replacing each directed arc with 

an undirected edge [31]. 

The network reciprocity is defined as  
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where ↔$  is the number of symmetric pairs of arcs, and $  is the total number of 

directed links [12]. Thus, if there is a link pointing from A to B, the reciprocity 

measures the probability that there is also a link pointing from B to A.  

If we consider a particle moving between the nodes of the network, the 

reciprocity can be interpreted as the probability that such particle returns to the starting 

node after visiting any of its nearest neighbours, i.e., after completing a closed walk of 

length two. The following is a very well+known result in graph theory: 

!�������� [30]. Let �  be the adjacency matrix of a graph. The quantity 

( ) ( )�%&

& %� �=,�  counts the number of different walks (for %� ≠ ) or closed walks (for 

%� = ) of length &  between nodes �  and % . 

Then, it is straightforward to realize that the reciprocity of a network is equal to 

the number of closed walks of length 2=&  divided by the number of closed walks of 

length 2=&  in the underlying graph of the digraph, 

( )
( )[ ] &

&

��

��

 �

 
�

�

"
==

2

2

�
�

,        (1) 

where "  and �  are the adjacency matrices of the digraph and its underlying graph, 

respectively.  

Then, the reciprocity can be seen in a more general context. In such context we 

can consider the existence of a walk of length &  from A to B and ask for the probability 

that there will be also a walk of length �  (not necessarily different from & ) from B to A. 

Of course, when 2=+ �&  we have the reciprocity as defined previously. Shorter walks, 

however, are typically more important than longer walks, so it is intuitively reasonable 
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to form a length+based weighted average for accounting such probability. Taking these 

two conditions into account, we define the following measure for complex networks: 

"� 	�	�	����#�The returnability is the fraction of closed walks (returnable walks) in the 

digraph to the number of such walks in the underlying graph of the digraph in such a 

way that the closed walks are weighted in decreasing order of their lengths. 

Mathematically, the returnability can be defined as 

( ) ( ) ( ) ( )
( )[ ] ( )[ ] ( )[ ] �

��

+++

++++
=

 �� �� ��

 � � �
 �

&&

&&

& ���
���

χ
3322

3322, .    (2) 

Note that we are considering digraphs and graphs without multiple links or self+loops 

and hence we have taken advantage of the fact that ( ) ( )[ ] 011 ==  � ��  due to the 

absence of self+loops, i.e., links starting and ending at the same node. Then, it is 

straightforward to realize that the reciprocity is a particular case of the returnability with 

0=&�  for 2>& .  

$��%����	���	&������������ ���������	
	���

The result, given here without further proof, is a quantitative measure for the 

returnability of a digraph. We obtained the following result.   

'�����	�	����: Let   be a non+empty digraph of order ! . Let "  be the adjacency 

matrix of the digraph and let �  be the adjacency matrix  of the underlying graph of  , 

namely ( ) � . Then, if we select !/1 &�& = , the returnability may be expressed as 

follows: 

( )
!�

!�
 &�& −

−
==

�

"

tr

tr
,!/1χ ,        (3) 

where (�  represents the exponential matrix and tr represents the trace. 
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��������. A variation of the previous definition of returnability can be obtained by 

considering only the odd (or even) closed walks in the digraph and the underlying 

graph, which are, respectively: 

( )( ) ( )[ ]
( )[ ] !

!
 &�& −

−
=+=

�

"

sinhtr

sinhtr
,!12/1χ , 

( )( ) ( )[ ]
( )[ ] !

!
 &�& −

−
==

�

"

coshtr

coshtr
,!2/1χ . 

If we compare the expressions for the reciprocity (1) and that for the returnability 

using !/1 &�& = , we can see that the returnability χ  gives a weight to the closed walks 

of length 3 which is only a third of that given to the closed walks of length 2, i.e., 

2/12 =�  and 6/13 =� , whereas the reciprocity �  gives a weight of zero to the closed 

walks of length larger than 2, 12 =�  and 03 =� . Another intuitive choice of the 

weighting coefficients is to define the returnability in such a way that the longer closed 

walks are penalized in a more dramatic way than the shorter ones. This is introduced in 

the following result. 

'�����	�	���$: Let   be a non+empty digraph of order ! . Let "  be the adjacency 

matrix of the digraph and let �  be the adjacency matrix  of the underlying graph of  . 

Then, if we select &

& !� −=  the returnability may be expressed as follows: 

( ) ( )[ ]
( )[ ] !!��

!!��
 !� &

&
−−

−−
==

−

−
−

1

1

/

/
,

��

"�
χ .      (4) 

'�		
: First we show that for 1ln +< !�&  the function &! −  penalizes the closed walks 

more than !/1 & , i.e., ( ) &&

& &! �� !/1<− , which is a condition for the new function we 

are looking for. Now, let !ααα ≤≤≤ �21  be a nonincreasing order of the eigenvalues 

of the matrix !/�( =  for any graph of order ! . Then, it is easy to see that the 

maximum value for an eigenvalue of (  is ( ) !! /11 −=α , which is attained for the 
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Perron+Frobenius eigenvalue of the complete graph !� . Consequently, 1<�α  

!� ,,1 �= . This condition assures the convergence 0→&(  as ∞→&  for any 

measure ⋅  defined for matrix ( . It is known [32] that if 1<�α  for  !� ,,1 �= , the 

series ∑∞

=0& &

&

!

�
 converges to ( ) 1/ −− !��  as ∞→& , which proves the result. 

Incidentally, the diagonal entries of the matrix ( ) 1/ −− !��  has been proposed by 

Estrada and Higham [33] as a variation of the subgraph centrality [22] of undirected 

graphs. 

An important feature of the newly introduced measures of returnability is that they 

can be easily compared between them and with the reciprocity. As we already showed 

in Eq. (1), the reciprocity can be expressed as the fraction of the second spectral 

moment of the adjacency matrices of the digraph and its underlying graph. Then, we can 

write a general expression for the returnability in the following form: 

( )
( ) ( )

( )[ ] ( )[ ]∑

∑
∞

=

∞

=

′+

′+
=′

3
2

3
2

,

&

&&

&

&&

&

 �� �

 � 

��

��

��
χ .      (5) 

Then, the reciprocity is the particular case where 0=′
&�  and the two reciprocity 

measures (3) and (4) correspond to 2/!&�& =′  and 2−=′ &

& !� , respectively. 

We now relate the measures of returnability to the graph spectra through the 

following result. 

'�����	�	���). Let   be a non+empty digraph of order ! . Let !σσσ ,,, 21 �  be the 

eigenvalues of the adjacency matrix "  of the digraph and let !λλλ ,,, 21 �  be the 

eigenvalues of the adjacency matrix �  of the underlying graph of  . Then, the 
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returnability of   based on the weights !/1 &�& =  and &

& !� /1=  may be expressed as 

follows, respectively: 

( )
( )

( ) ∑

∑

∑

∑

=

=

=

=

−

−

=
−

−

==
!

%

!

%

!

%

!

%

&

!�

!�

�

�

 &�
%

%

%

%

1

1

1

1

1

1

,!/1
λ

σ

λ

σ

χ ,      (6) 
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=
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


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


−









−
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!
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!

% %

!

%

%

!

%

%

&

&

!

!

!

!

!

!
 !�

1

1

1

1

1

1

1

1

,

λ

σ

λ

σ

χ .     (7) 

'�		
: It is well known that the number of closed walks of length &  in a digraph is 

equal to the & th spectral moment, since ( ) ∑∑ ==
==

!

�

&

�

&!

� ��

&

11
tr σ��  [30]. Then,  

∑∑∑∑
=

∞

= =

∞

=

−==






 !

%

%

&

!

%
&

&

%

&
&

&

!
!! 10 10

/1tr β
β(

, 

where (  and %β  represent the adjacency matrix and eigenvectors of the digraph or 

graph, respectively. The result follows immediately from the previous expression. 

��������: It is straightforward to realize that the reciprocity can be expressed in terms 

of the eigenvalues of the digraph and its underlying graph as follows: 

( ) ( )
1

1

2

1

2

−

==








= ∑∑

!

%

%

!

%

%� λσ .        (8) 

Incidentally, in a previous work one of the current authors (EE) defined the 

������
������������ of an undirected graph as [22] 

( ) ( ) ∑∑
=

∞

=

===
!

%&

&

%��
&

���
10

tr
!

λ��
 .       (9) 

This graph theoretic invariant has been renamed by Gutman et al. [23+25] as the Estrada 

index of a graph. Several of the mathematical properties of the Estrada index as well as 
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its relationship with graph energy and other graph parameters have been studied in the 

recent literature [23+29]. 

By analogy with (7) we can define the Estrada index of the digraph as 

( ) ( ) ∑∑
=

∞

=

===
!

%&

&

%��
&

 ��
10

tr
!

σ""
.       (10) 

Using the Estrada indices of the digraph and its underlying graph the returnability for 

!/1 &�& =  can be expressed as 

( ) ( )
( )[ ] ! ���

! ��
�&�& −

−
== ,!/1χ .       (11) 

        
In the following result we show that the returnability as the reciprocity is bounded 

between zero and one. 

'�����	�	���*. The returnability of a digraph is bounded as ( ) 10 ≤≤ &�χ . The lower 

bound is obtained for a graph containing no cycles and the upper bound is reached for 

symmetric digraphs. 

'�		
: In general we can write the expression (2) defining the returnability of a digraph 

in term of the eigenvalues of the adjacency matrices of the digraph and its underlying 

graph:  

( )
��

��

++++

++++
=

∑∑∑
∑∑∑

===

===

!

%

&

%&

!

% %

!

% %

!

%

&

%&

!

% %

!

% %

&

���

���
 �

11

3
31

2
2

11

3
31

2
2

,
λλλ

σσσ
χ .    (12) 

A digraph   contains no cycle if and only if the spectrum of   contains no eigenvalue 

different from zero, i.e., 0=%σ  for �% ,,1 �= . If   contains no cycle, there must be 

an integer �   such that �"  is a zero matrix. Then, the numerator of (7) is zero, which 

proves the first part of the result. The second part of the result simply comes from the 

fact that a symmetric digraph is identical to its underlying graph. 
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It is interesting to investigate how the returnability is affected by the size of a 

directed cycle. For instance, in a symmetric digraph of two nodes the returnability is 

equal to one, but it decreases dramatically even for a directed triangle. Then, in general 

we have the following results for directed cycles of any length. 

'�����	�	���+: Let !�  be a directed cycle of order ! . Then, the returnability 

( ) 0, →!& ��χ  for ∞→! . 

'�		
. For directed cycles of order !  the expression (2) can be written as follows: 

( )
( )[ ] ( )[ ] ( )[ ] ���

��

+++++

++++
=

 �� �� ��

!�!�!�
��

!!&&

&!!!

!& ���
χ

2222

2, .  (13) 

Then, for large values of ! , Eq. (13) can be approximated as 

( ) ( )
( )∑

∑

=

∞

==
&

&

&

&

&!

!&

&

&
�!

�!

��
2

1
22

1

!

!2
,χ .        (14) 

It can be easily shown that the denominator of (14) does not vanishes. Then, because the 

coefficients &�  are selected to decrease very fast as &  increases, it is straightforward to 

realize that 0
1

→∑
∞

=&
&!�  for ∞→! , which proves the result. 

�������$: The denominator of (14) for the coefficients !/1 &�& =  and &

& !� /1=  are 

approximated by 
( )

!
&

!
&

&

2795.1
!

12

1
2
≈∑

=

 and 
( )

( )
!

&!

&
!

&

&
&

≈∑
=

2

1
22 !

!2
. 

The last result has an important consequence for the study of returnability in 

complex directed networks. That is, a directed network displays large returnability if, 

and only if, it contains a large number of small directed cycles. These findings are 

analysed in the following section. 

)��,����	
�
�����
���
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Small directed graphs are the basis of the structural motifs present in complex 

networks [34, 35]. Network motifs are recurring, significant patterns of interactions, 

which appear more frequently in real+world complex networks than in random graphs 

with the same topology. The most studied motifs are three+ and four+node directed 

graphs. We study here all 13 types of three+node connected directed graphs, which form 

the basis of the most important motifs. In Table 1, we give the values of the reciprocity 

and returnabilities of these 13 directed graphs. 

�������!��
����������������

As can be seen in Table 1, there are four non+returnable directed graphs, i.e., 

digraphs with zero returnability, with three nodes. Two of them, Nos. 2 and 4, have 

been identified as motifs in food webs and gene regulation networks, respectively. 

These graphs also have zero reciprocity. They receive the name of  �����,����� and 


���
	�������		
, respectively [34, 35] (see Fig. 1). In general, the two measures of 

returnability as well as the reciprocity are correlated to each other for these small cycles. 

However, there are important differences as the one observed for the �����,�	���


������&��		
�(see Fig. 1). This subgraph correspond to the number 5 in Table 1 and has 

been found as a motif in digital functional multipliers. It has no reciprocity but 

returnability different from zero. It is evident that non+returnability implies non+

reciprocity but the reverse is false.  

��������	�����������������

The graph 6 is known as the �
���&�������������� motif [34, 35] and has been 

found to be significant in WWW. In the WWW network, the subgraphs 12 and 13, 

which display large relative returnability have been found to be among the three most 

significant motifs [34, 35]. The graph 12 is named 
������&��������	��������������and 

appears more than 100,000 times in the WWW version of nd.edu [34, 35]. The graph 
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13, which is known as the 
������	�������������, is the most populated motif in the 

WWW, where it appears almost 7 million times [34, 35]. 

The motifs found by Milo et al. [34, 35] for the communication network of WWW 

correspond to the ones having the largest returnability of all three+node graphs. This is 

due to the principal functional characteristic of this network which has been designed 

with the aim of having short paths between related pages in a returnable way to allow 

inter+users communicability. Thus, the use of the returnability parameter defined here 

can add some value to the analysis of the network motifs in complex networks, giving a 

quantitative support for the functionality of such significant patterns of interactions in 

complex directed networks. 

()-)�+��������������������,�	�����������������	�&��

As the first examples for the analysis of returnability in real+world complex 

directed networks, we have selected two citation networks. In a citation network, the 

nodes represent the papers and the directed links the citations. That is, there is a link 

from paper A to B if the paper A cites the paper B. The first network is a citation 

network of papers published in the field of network centrality [36, 37]. The second is a 

citation network of papers that cite S. Milgram's paper published in Psychology Today 

in 1967 or that use Small World in title [36, 37]. In a citation network, there is no 

returnability for any node. That is, the citation networks are non+returnable graphs. If a 

paper A cites a paper B, it is because the paper B existed before paper A was created. 

Then, if B cites C, it is impossible that C cites A because it violates the law of causality. 

This effect prevents the presence of directed cycles in the graph, which makes it non+

returnable. Then, as expected, both networks have returnability and reciprocity equal to 

zero. 
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Another example of non+returnable network is the Internet at the autonomous 

system (AS) level. An AS is a portion of the Internet under a single administrative 

authority. They can be administrated by a single institution, such as a company, a 

university, or an Internet service provider (ISP). We studied two versions of the Internet 

at 1997/11/08 and 1998/04/02 at the AS level [38]. In both cases, the directed networks 

are non+returnable with returnability and reciprocity equal to zero. These results reflect 

the real+world situation of the Internet, where the commercial relations between ASes 

make that the customer+provider relationships cannot contain (returnable) cycles [14, 

15]. For instance, a nation+wide AS may be a provider for a regional AS, which at the 

same time is a provider for a particular university campus, but this university campus 

cannot be a provider for the nation+wide AS. Note that a closed walk can exist in the 

underlying graph; consider e.g., the case that AS1 provides services to AS2 and AS3 

and AS2 also provides services to AS3. 

Then, we study other 12 real+world complex directed networks. They correspond 

to: (neurons) the neuronal synaptic network of the nematode �)��������; (trans+yeast) 

the direct transcriptional regulation between genes in ������	����������#����; four 

food webs corresponding to (St. Martin) birds and predators and arthropod prey of 

��	��� lizards on the island of St. Martin, which is located in the northern Lesser 

Antilles; (Benguela) a marine ecosystem of Benguela off the southwest coast of South 

Africa; (Skipwith) invertebrates in an English pond; (LittleRock) pelagic and benthic 

species, particularly fishes, zooplankton, macroinvertebrates, and algae of the Little 

Rock Lake, Wisconsin, U.S; (Roget) the vocabulary network of words related by their 

definitions in Roget’s Thesaurus of English; (Prison) a social network of inmates in a 

prison; (electronic 1, 2 and 3) electronic sequential logic circuits, where nodes represent 

logic gates and flip+flops (digital fractional multipliers); (USAir97) the airport 
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transportation network in the U.S.A. in 1997. The values of the reciprocity and 

returnability for these complex networks are given in Table 2. 

�������!��
����������������

As can be seen in Table 2 the values of the returnability for &

& !� −=  are very 

close to those of the reciprocity. This is a consequence of the very large penalization 

imposed by the weighting scheme for large &  which makes that practically only the 

closed walks of length 2 are considered in the returnability. However, the returnability 

based on !/1 &�& =  is significantly different from the reciprocity in both qualitative and 

quantitative terms. This differences can be easily observed for the case of the three 

electronic circuits which have several cycles of length three but no cycles of length two. 

Then, these networks have reciprocity equal to zero but display certain returnability. In 

these electronic circuits, Milo et al. [34, 35] found that the most important motifs 

present in such systems correspond to the three+node feedback loop, bi+fan and the four+

node feedback loop. The first and third motifs are returnable ones but they have 

relatively low values of returnability as we have previously shown in the previous 

section for the three+node feedback loop. The bi+fan is a non+returnable motif, which 

explains the relatively low returnability of these circuits (see Fig. 1). The food webs 

studied display low returnability in full agreement with the results obtained by Milo et 

al., who have found that, in general, food webs contain large numbers of bi+parallel 

motifs as well as three chains (see Fig. 1), all of which are non+returnable motifs. 

The three measures coincide in identifying the USAir97 network as fully+

returnable and reciprocal, i.e., it is a symmetric digraph. This is a transportation network 

in which the returnability is essential for its correct function. However, the reciprocity 

and returnability based on !/1 &�& =  differ in identifying the secondly ranked network. 

While the reciprocity identifies the Roget thesaurus network as the second most 
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reciprocal, the returnability based on !/1 &�& =  identifies the social network of prison as 

the second most returnable. In the thesaurus two words are connected if one is used in 

the definition of the other, which increases the probability of finding reciprocal 

relationships. In fact, 39% of the 3640 links are bi+directional [39]. In the social 

network this percentage is only 28% but in contrast it displays a large proportion of 

directed triangles and squares. Directed triangles are a consequence of the transitivity of 

social relationships and they have been established as a characteristic mark of social 

networks.  

Finally, we can see in Table 1 that the biological and ecological networks display 

low reciprocity and returnability. The neuronal network has been found to have 125 

feed+forward loops, 127 bi+fans and 227 bi+parallel motifs in this network (see Fig. 1) 

[34, 35]. Neither of these structures is returnable, but consists of some firing neurons 

(circles in Fig. 1) and some sinks (squares in Fig. 1). It has been recognized that only 

10% of synaptic couplings in this network are bidirectional. The yeast transcription 

network was found to have 70 feed+forward loops and 1812 bi+fan motifs, while the one 

of �)��	�� has 40 and 203, respectively [34, 35]. Here the existence of symmetric 

relationships and returnable cycles is very low, which makes practically no influence of 

the total returnability of these networks. Finally, Milo et al. [34, 35] have found that 

food webs contain large numbers of bi+parallel motifs as well as three chains (see Fig. 

1), all of which are non+returnable motifs. 

*��-��

��	���

The discovery of the unexpectedly coherent graphs representing disparate complex 

systems has placed “graph theory to the heart of a new paradigm of science” [40] in the 

XXI century. These complex graphs and digraphs (complex networks) are ubiquitous in 

society, biology, ecology, economy and modern technology. The understanding of their 
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structure and functioning is vital to comprehend complex systems as a whole. Here we 

have introduced a new measure that characterize an important architectural property of 

complex directed networks.  

The concept�of�������������� introduced here is a generalization of the more 

limited concept of ����
�	����, which has proved to be of remarkable importance in 

understanding complex networks. We have introduced two measures of returnability 

which are given by closed mathematical formulas for their calculation. More 

importantly, these measures can be expressed in terms of the graph spectrum, which 

allows to connect this concept with the vast arsenal of graph spectral theory. We finally 

have analysed the new concept and measures in studying a dozen of real+world complex 

networks arising in different scenarios. We have seen that the new concept of 

returnability complements very well other concepts used for studying complex 

networks, such as that of the ����	�&��	��
�. While network motifs are studied on a 

computational and statistical way, the returnability can be studied from a mathematical 

perspective. Thus, we agree with Chung and Lu [40] that “Mathematicians and 

especially graph theorists have much to contribute to building the scientific foundation” 

of complex networks. 
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 Table 1. Values of the reciprocity and the returnability for the 13 directed graphs with 3 

nodes. 

 

number subgraph ( ) ��  �  ( )��& ,χ a ( )��& ,χ b 

1 

 

3.000 0.000 0.000 0.000 

2 

 

3.000 0.000 0.000 0.000 

3 

 

3.000 0.000 0.000 0.000 

4 

 

3.000 0.000 0.000 0.000 

5 

 

3.504 0.000 0.098 0.077 

6 

 

4.086 0.333 0.212 0.167 

7 

 

4.086 0.333 0.212 0.167 

8 

 

4.634 0.333 0.319 0.261 

9 

 

4.086 0.500 0.461 0.437 

10 

 

4.086 0.500 0.461 0.437 

11 

 

5.950 0.667 0.576 0.500 



 22

12 

 

5.356 1.000 1.000 1.000 

13 

 

8.125 1.000 1.000 1.000 

a !/1 &�& = . b
&

& !� −= /1 . 
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Table 2. Values of the reciprocity and returnability measures for several complex 

directed real+world networks. 

 

network nodes links �  ( )��& ,χ a ( )��& ,χ b 

Neurons 280 1973 0.0998 710795.7 −⋅  0.0994 

Trans+yeast 662 1062 410416.9 −⋅  510637.4 −⋅  410434.9 −⋅  

St. Martin 44 218 0.000 0.000 0.000 

Benguela 29 191 0.0262 610966.1 −⋅  0.0165 

Skipwith 35 353 0.0453 810756.3 −⋅  0.0239 

LittleRock 181 2318 0.0206 1510173.2 −⋅  0.0191 

Prison 67 142 0.2820 0.1242 0.2804 

Roget 994 3640 0.3895 0.0353 0.3894 

Electronic1 122 189 0.0000 0.0164 410530.6 −⋅  

Electronic2 252 399 0.0000 0.0153 410990.2 −⋅  

Electronic3 512 819 0.0000 0.0145 410432.1 −⋅  

USAir97 332 2126 1.0000 1.0000 1.000 

a !/1 &�& = . b
&

& !� −= /1 . 
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�

�	������. Some subgraphs of three and four nodes that have been previously identified 

in the literature as network motifs. 

 

 

 

 

 

 

 




