Dynamic phenomena arising from an extended Core Group model

David Greenhalgh and Matrtin Griffiths

Department of Satistics and Modelling Science, University of Srathclyde, Livingstone Tower,
26 Richmond Street, Glasgow G1 1XH, U.K.

Abstract

In order to obtain a reasonably accurate modetherspread of a particular infectious disease
through a population, it may be necessary for thiglel to possess some degree of structural
complexity. Many such models have, in recent yebeen found to exhibit a phenomenon
known as backward bifurcation, which generally implthe existence of two subcritical
endemic equilibria. It is often possible to refithese models yet further, and we investigate
here the influence such a refinement may have erdyimamic behaviour of a system in the
region of the parameter space né&gr=1.

We consider a natural extension to a so-called gooep model for the spread of a
sexually transmitted disease, arguing that this mafiact give rise to a more realistic model.
From the deterministic viewpoint we study the pblesishapes of the resulting bifurcation
diagrams and the associated stability patternschastic versions of both the original and the
extended models are also developed so that thelpility of extinction and time to extinction
may be examined, allowing us to gain further inghto the complex system dynamics near
R, =1. A number of interesting phenomena are obseirfegdyhich heuristic explanations are

provided.

1 Introduction

When using a system of deterministic differentgli@ions to model the spread of an infectious
disease within a population it is possible, by legmll but one of the system parameter values
fixed, to obtain a diagram showing how the endeanid the disease-free equilibrium solutions
change as the remaining paramet@r,say, is varied. For some particular valueaofthis
diagram indicates a change in the qualitative bielavof the system, at which point the
disease-free equilibrium (DFE) bifurcates into artwh representing an endemic equilibrium
and a further branch of the DFE. The parameterand its associated graph are, as a
consequence, known asb#urcation parameter and bifurcation diagram respectively. The
point at which this change in behaviour occurseigned thebifurcation point, and the curve

emanating from it theifurcation curve.



By considering thdvasic reproduction ratio R, for the system it is straightforward to
obtain the location of the bifurcation point. Thasic reproduction ratio is defined to be the
expected number of secondary cases produced ipugtion at the DFE by a typical infective
individual during his or her entire infectious meti In generalR, will be a function of the
system parameters (see Diekmahal. (1990) for a precise mathematical formulatiomy ¢he
value of o at the bifurcation point correspondsky =1.

The bifurcation diagrams of simple epidemic modellsvays display forward
bifurcation. In this case the bifurcation curve is such th&tone moves along it from the
bifurcation point, the level of infection increasas R, increases, and the disease is able to
persist in the population wheR, > Wut dies out otherwise. In recent years, howeser,
phenomenon known dmckward bifurcation has emerged whereby the disease can, for certain
parameter values, persist even wen< . I this case the initial direction of the bifaton
curve is such that as one moves along it from thedation point, R, decreases as the level of
infection increases. It seems that the potentinktie existence of backward bifurcation in an
epidemic model was first noted in similar paper{iagtillo-Chavezt al. (198%) and (19898),
and Huangt al. (1992). Some of the more recent papers in this area indhake by Castillo-
Chavez and Song (2004), Brauer (2004), Fengl. (2000) and Songt al. (2006). An
extensive literature survey of epidemic models leitinig this phenomenon was carried out by
Griffiths (2007).

The presence of backward bifurcation indicatesetkistence of two or more endemic
equilibria for R, < 1, known assubcritical endemic equilibria. It has been demonstrated in
some models exhibiting backward bifurcation (seee@halghet al. (2000), for example) that
there is the possibility for subcritical endemicuiigria to be locally asymptotically stable
(LAS). This certainly has implications for diseasmtrol since the classical requirement for the
eradication of the disease is no longer satisfreduch cases. It is now possible for the
proportion of infected individuals in the populatito remain at a steady level or even invade
whenR, < 1

The phenomenon of backward bifurcation tends tesearin relatively complex
deterministic epidemic models, often ones possgssome sort of group structure. Such
models may, for example, incorporate disease-droleanges in behaviour or take account of
the fact that the disease has several stages.it®#sgir complexity, many of these models may
still be regarded as over-simplified representatiof the progress of the disease through a
population. In such cases it might be possiblexiend the model in a natural way, thereby
giving a better approximation to the true diseasecture. Indeed, Greenhalgh and Griffiths
(2009) argued that a three-stage model for theadpod bovine respiratory syncytial virus
(BRSV) in cattle may be more realistic than the-stamge model studied by Greenhakghal.



(2000). It might then be asked whether this ineeeim the complexity of the model provides
scope for yet more complicated bifurcation diagraamsl hence more complicated system
dynamics in the region of the parameter space Rgarl. Subsequent investigation of the
three-stage BRSV model revealed that this wasantfee case.

In this paper we study, in connection with thengimade above, th€ore Group
model (CG model) for the spread of a sexually tmgittied disease as described by Hadeler and
Castillo-Chavez (1995). The CG model is able thilex backward bifurcation, although we
note here that there is a distinct structural difiee between the CG and BRSV models. While
the latter models a disease that passes througiradestages, the CG model incorporates
disease-driven changes in behaviour. After outfjrthe main features of this model, we carry
out an analytic study of the local asymptotic digbof the endemic equilibria with the purpose
of seeing whether a general result emerges relatiagtability of endemic equilibria to their
positions on the bifurcation curve. The CG modeahien extended in a natural way in order to
explore the possibility that more complicated lohtron diagrams and stability patterns might
appear, as was found when the BRSV model was extkindm two to three stages.

Stochastic aspects of the CG models are also stheiee. In particular, we explore the
interaction between the deterministic phenomenobagkward bifurcation and the probability
of extinction for the corresponding stochastic i@rof each model. Our main purpose here is
to compare the theoretical probabilities of exiimettfor stochastic formulations of the model
with the corresponding probabilities obtained waextensive series of stochastic simulations.
We would hope to be able to offer explanations &my observed discrepancies. Our
investigations were carried out using analyticall aumerical methods, and also by way of
computer simulations. We have indeed found intergslinks between the presence of
backward bifurcation in the deterministic modelsd ae probability of extinction in the
stochastic versions. Furthermore, the expecte@d tim extinction for the CG model is
considered in order to see whether, in certairupistances, it is possible to observe significant
discrepancies between theoretical and simulategesalin contrast to the rather inconclusive
results of Griffiths (2007) for the two-stage BR3Mdel. Some more unusual bifurcation
diagrams are then obtained by using the full epidenodel (i.e. the model for the population
as a whole rather than just that for the isolatedisglly active core group).

When investigating backward bifurcation and asdedigphenomena in the two and
three-stage BRSV models, Greenhalgh and Griffit2909) obtained, both from the
deterministic and the stochastic point of view,umber of potentially interesting results. It
cannot be assumed however, that such resultsnebtély studying one model in isolation, will
automatically carry over to other epidemic modelslthough detailed analysis revealed a

number of phenomena that were noteworthy in their dght, it may be that these were in fact



particular to the model that was being consider@tius, in the light of the findings for the
BRSV models, we would like to see which of thesemdmena do actually transfer to other

epidemic models.

2 Thebasic Core Group model

Hadeler and Castillo-Chavez (1995) consider theapof a sexually transmitted disease. The
populationP is split into two classes; a sexually active asldtively small core grou@ and a
weakly connected and sexually inactive remaindercae groupA. The core group is further
subdivided into susceptibl§ educated (or vaccinatedj and infectedl individuals with
C=S+V+| and P=A+C. Members of the core group are recruited from riba-core
group.

This scenario is modelled by way of a general $dlifterential equations. In order to
be able to draw some conclusions about the behawbuhis rather complex model, the
following system of differential equations, modegji an isolated core population of constant

sizeC, is studied in detail:
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where u is the (per capita) common birth and death rgfejs the transmission rate from
infected to susceptible individuals@ is the transmission rate from infected to educated
(vaccinated) individuals (Witmsﬁs,[?), a is the recovery ratey is the proportion of
recovered individuals passing into the educatesscdmdy is the rate of direct transition from
the susceptible class to the educated class. #wecabove system is homogeneous it can be
normalised by settingC =1, meaning that§ V and| then represent population proportions
rather than numbers of individuals.

The reproduction ratios for initial populations ewting entirely of susceptible and

educated individuals respectively are

R= B andR= B ,
a+u a+u

and the basic reproduction ratio is given by



v_g- B+

= H R
R = N e N G )

v oou

where R, is written as a function ofy in order to indicate thafy is to be utilised as the
bifurcation parameter. We note here tRand R given above are denoteR, and ﬁo
respectively in the paper. We make this changeder to avoid confusion over the commonly
accepted notation for the basic reproduction ridiid we have adopted here. The authors make
the point that education is not necessary wikenl, while if R>1 then education is not
effective, so the interesting situation R<1< R, and we shall assume that this is the case.
When R<1<R the unique education rate unique education gafer which R,(¢)=1 is

given by

. R-1
== Zu>0.
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3 Locally asymptotically stable endemic equilibria and the bifurcation curve

In their detailed analysis of the endemic equitilof the two-stage BRSV model, Greenhadgh
al. (2000) found that when backward bifurcation wasspnt the upper subcritical endemic
equilibrium was always LAS while the lower one walsvays unstable. This could be
interpreted as saying that a particular endemidibgum was LAS if, and only if, the gradient
of the bifurcation at that point was positive. dm@stingly enough, Greenhalgh and Griffiths
(2009) found that these straightforward stabiligiterns did not always occur when the BRSV
model was extended to three stages. The vertizaing points of the more complicated
bifurcation curves were not necessarily the poaitsvhich a change in the stability of the
endemic equilibria occurred.

There would appear to be two possibilities her&hde the stability patterns observed
in the two-stage BRSV model may also be found iheotmodels exhibiting backward
bifurcation but no more than two endemic equililotathe stability patterns found in the two-
stage BRSV model are particular to this model.sTéisomething that we now investigate. The
CG model is ideal for this purpose since it is cineally different to the two-stage BRSV model
yet provides us with another example of a systamvfoch backward bifurcation can occur, but
in which no more than two endemic equilibria aragble.

Setting the time derivatives of the system of défdial equations (2.1) to (2.3) to zero
and solving forl gives the following equation inh_, the proportion of infected individuals at

endemic equilibrium:



BB +(Bw+u+a-y) -+ Bu+ay)). +wu+a-pB)+uu+a-p=0. (3.1)

From this the equation of the bifurcation curveiigen by
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As we are assuming thag <1 (i.e. thatﬁ <u+a)itis clear that the denominator is non-zero
for all non-negative values df,, so that the bifurcation curve is continuous factsvalues of
I.. Since, as is easily checkegﬁ(u+a—,§)+u(u+a—,8) = whenR,=1,1,=0isa
solution to equation (3.1) wheR, = . 1The bifurcation curve therefore passes through t
coordinate(wD,O). Then, as there can be no more than two diséndemic equilibria for a
particular value ofy , the bifurcation diagram will exhibit backward tni€ation if, and only if,
it exhibits subcritical endemic equilibria. FrorB.Z) there might initially appear to be the
possibility for the bifurcation parameter to be atge for all 0<l,< 1 However, the
assumption thaR >1 (i.e. that 8 > u +a) implies, by continuity, that there do exist pat
values ofl, for which there are positive values@fl, . )

Hadeler and Castillo-Chavez (1995) showed, by amady the gradient of the
bifurcation curve at the bifurcation point, thatckaard bifurcation is possible in certain

circumstances. They studied
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by keeping the parametess, y and u fixed while varying 8 and ,[~3 subject to the constraint

R<1<R , and concluded the following:

There is a backward bifurcation at (/" if the following conditions are satisfied: a is

largein comparison with 4, y issmall, R isfar fromboth 0and 1,and R islarge.

Before moving on to the stability analysis of thedal, we briefly indicate how the
above results could have been arrived at via atdfigsimpler method. The work in this
paragraph does not purport to be an in-depth aisabfsthe situation; it merely illustrates an
alternative method for analysing the direction lodé bifurcation at the bifurcation point. As
Yu+a —ﬁ) +u(u+a-p£)=0 whenR, = 1 the condition for backward bifurcation to occur
is that that the coefficient df, in (3.1) is negative whef®, = .1Using the fact that
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Following Hadeler and Castillo-Chavez, we keep y and u fixed while varying 8 and E
subject to the constrainR >1> R. If E <u+ay then ,8(,u+ay)/ﬁ > [, and the above
inequality can never be satisfied. This shows fRamust not be too close to O if backward

bifurcation is to be possible. On the other haind,

/j-{-a—w 3 M>ﬁ,
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and, once more, our inequality cannot be satisfieghm this it follows thaR must not be too

close to 1 for backward bifurcation to occur.

3.1 Analytic stability analysis

Hadeler and Castillo-Chavez state that a stableraimdequilibrium always exists whap is
decreased below". This is certainly what might be expected, notingt decreasing/ below

¢" is equivalent to increasing, above 1. However, when there is backward bifizoathe
authors claim that ifiy is decreased below" then, in the presence of even a very small
proportion of infected individuals, the system jusmip the upper branch, and thatyf is
increased again the system stays on the uppertb@hthe way to the turning point. This
initial behaviour is once more as we might expéctt it is the latter phenomenon that is
interesting since it would imply that the endemjyuiébrium at each point on the portion of the
bifurcation curve with negative gradient is LAS.owkever, as no accompanying analysis was
provided to support this claim, it is likely thdtig result was obtained numerically. We first

provide an analytic proof that this is in fact tase.

Theorem 3.1.1 A particular endemic equilibrium for the CG model is LASif, and only if, the
gradient of the bifurcation curve at the point corresponding to that endemic equilibrium is

negative.

Proof Equation (3.2) may be rearranged to give

=~ ald-pl. +u
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w.)=(B ﬂ)ﬁg+(a+y—/n (At H) (3.1.1)




so that

w(1,)=p-patNaru-B-us_p (3.1.2)
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From this it follows that the gradient of the bdation curve ai(t//(le),le) is negative if, and
only if,
~ a(l-y)a+u-B) - up
p>p-p LN L D
B+ @+ u- B

Next, on linearising the system of equations (2t4) (2.3) about the endemic

equilibrium solution(S,,V,, |, )we obtain the Jacobian
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This can be reduced this to2x2 matrix by puttingV, =1-S, -1, in order to eliminate/,
from the differential equations, thereby elimingtithe corresponding row and column in the
Jacobian. We obtain
Jz(—ﬁ‘e_‘/_{—/«l ~BS. +a(l-y) ]
A.-B. BS+BA-S -2 )-a-u

leading to the quadratic following characteristjuationdet[J - Al ,] = 0(wherel , represents

the 2x 2 identity matrix):

(-a.-v--aB-Hs.+Ba-21)-a-u-2)
~L(B-B)-F5.+al-y)=0. (3.1.3)
From (2.3) we obtain, witlC =1 and usingv, =1-S, -1, that

o But@ru-p)
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On substituting this into equation (3.1.3) we hafegr some simplification, that

(B~ =B, - N+BB . +@+u-Pf, -ad-y)(B-B), =0,



from which it follows that

2B+ B +y+
+BA+p+ @)+ BB+ @+ =P, —al-Y(B-B),=0. (3.14)

The endemic equilibrium is LAS if both roots of tblearacteristic equation (3.1.4) have
strictly negative real parts, and is unstable ifeaist one root has a strictly positive real part.
Now both roots ofA* +bA +c= Qwhereb andc are real, have strictly negative real parts if,
and only if,b andc are both strictly positive. Thus the endemic Biogaim is LAS if, and only
if,

BB, +y+u)+ BB, +(a+u-B-ad-n(B-B)>0.

Substituting the expression (3.1.1) gl .) into the above inequality gives

Bp-B)-2E I BB @+ - B -at-p(B-B) >0
BBz s BB .+ @+ pu-Bl-aa-yB-B) >0,

which can be rearranged as
5> (35U N@+u=F)~1p
B+ @+u-pf

as required. []

This result parallels that found by Greenhadghl. (2000) for the two-stage BRSV model.

4 Extending the Core Group Modd

We now extend, in a natural way, the CG model (dmal henceforth be termed thasic CG
model) to obtain arextended CG model. This will be effected by incorporating two edteth
classesE, and E,, into the model. It shall be assumed that indigid can be ‘educated’ with
regard to the disease in one of two different wa@H. course, the type of education on offer
would depend on the disease. It could take them fof vaccines, creams, drugs, condoms or
behaviour modification through education programmasiongst others. For a sexually
transmitted diseasds, might correspond to those individuals using aipaldr type of condom
while E, represents those using a type that is less aféeutith regard to protection from the
sexually transmitted disease. Alternatively, theseld be classes of individuals with reduced

levels of promiscuity due to the availability of awdifferent sex-education programmes.



Another possible interpretation is that tfig and E, classes respond to the education in
different ways.

This does, in fact, have a highly topical flavounce theBill Gates Foundation is
currently offering, for projects that it deems wuort significant funding for developing new
ways of reducing the impact of major diseases &ae Lister (2005) and Bill & Melinda Gates
Foundation (2006)). This might conceivably giveerto ‘competing’ forms of education for a
particular infectious disease.

We assume here that membership of these educateseslis mutually exclusive in that
an individual cannot simultaneously belong to bolihmight of course be argued that this will
not necessarily be the case and that in certatnrmistances some individuals may be regarded
as being in both classes. This more complicatedas@ could be modelled by incorporating
three educated classes into the model, the exss containing those individuals that belong to
both E, and E,. However, our model would be a special case iefdituation and is certainly
more feasible to study initially. The susceptilmidividuals may be regarded as those that are
completely uneducated with respect to the diseaBhis leads to the following system of

differential equations:

as_ . 9 _ B o _
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and i: B8 + BE | + BE,l —al -/ .

dt C

There is no need explicitly to define all of thegraeters here since their definitions follow on
in an obvious way from those in the basic CG modébte that this model does not allow for
direct migration between the two types of educatkbs, but this extra feature could be
incorporated at a later stage. Our simplifyinguagstions are not overly restrictive in the sense
that any interesting behaviour we do observe feratbove model will be a subset of all possible
behaviours observable in the more general models.
As before, since the above system is homogeneooanitbe normalised by setting

C =1, meaning tha§, E,, E, andl now represent population proportions rather thambers

of individuals, so we haveéS+E, +E, +|1 =1. The equilibrium solutions are obtained by
setting the time derivatives of the above systenediations to zero. With, denoting an

endemic equilibrium solution, it is found thal ° + XI 2 +YI_+Z =0, where
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W =B.8,5,,
X = BBAaA-y,~ )+, +w, + ph+ BBy, + 1) + B.By(ay, + 1) = B.B.B;
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on noting that the basic reproduction ratio is gitgy
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If ¢, is used as the bifurcation parameter then thedafion curve is given by

W+ XIZ+YI +Z
B2 +HaBy, +aB,A-y,) + (B, + ) - BB . + ula+u-f)

1/’1(' e) ==

X = BBAal-y, - y,) +w, + b+ BB, (ay, + 1) + B.B:(ay, + 1) = BB.B.
Y =aB,A- v W, + 1) +aB{u-y,) + .}
+ (B B) W, + 1)~ BBY, + B (ay, ray, + U= 5, -B,),
and  Z= (@ + )W, + 1)~ 0.5, - 1B} .

5 Bifurcation diagramsfor the extended CG model

We now investigate the possibility that more cowgtied bifurcation diagrams, of the type
observed for the three-stage BRSV model by Greghhahd Griffiths (2009), arise from the
extended CG model. Since this paper already pesyidia a detailed equilibrium analysis of
the three-stage BRSV model, proofs that such kition diagrams are indeed possible for
epidemic models, there is no need here for futdregthy analytic existence proofs. Instead we
carry out a numerical investigation in which oupide of parameter values is, to certain extent,
guided by those used by Hadeler and Castillo-Ch&wethe basic CG model. These were as
follows:
a=40, u=02, =60, Osﬁs 33 andy =0.025

remembering thagy is the bifurcation parameter. It is clear thats dimensionless while the

remaining parameters all have the dimendiome™, although no specific units were given. In

fact, the specific units used for the parameteedmeot concern us here as we are only really

11



interested in their values relative to one anothbr.order for there to be any potential for

realism in the parameter values we would certamiyect, for the extended CG model, that the
transmission rates from infected individuals to tive types of educated individuals are both
less than the transmission rate from infected sceptible individuals. In other words, we shall

require thatg, > max{s,, 5,} .

Dynamic Bifurcation Diagram
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FIGURE 5.1: A bifurcation diagram for the extend€@fz model exhibiting backward

bifurcation.

Programmes were written in R (2004) to plot dynabifarcation diagrams for which
¢, was the bifurcation parameter agd the dynamic parameter. A point on a section 6éflso
curve corresponds to a LAS endemic equilibrium w/hilpoint in a dashed section represents an
unstable endemic equilibrium. Sets of parametaregawere found that produced bifurcation
diagrams exhibiting either backward bifurcation forward bifurcation along with multiple
subcritical and supercritical endemic equilibri&igures 5.1, 5.2 and 5.3 give a sequence of

snapshots taken from a dynamic bifurcation diagrdime set of parameter values given by

a=40, y=008,53 =25, B,=53, 3,= 60, y, = 006 andy, = 004

were kept fixed throughout the sequence. The vailtigs, used for each diagram are displayed

on the plots.

12



Dynamic Bifurcation Diagram
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FIGURE 5.2: A bifurcation diagram for the extende@ model exhibiting forward bifurcation

accompanied by two subcritical and three supecafigndemic equilibria.

Dynamic Bifurcation Diagram
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FIGURE 5.3: A bifurcation diagram for the extende@ model exhibiting forward bifurcation
accompanied by three supercritical endemic equalidvut for which no subcritical endemic

equilibria are present.
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The type of bifurcation curve as given in Figurg Ban also be observed for the basic
CG model. On the other hand, curves with more dimated shapes, as shown in Figures 5.2
and 5.3, cannot be observed for the simpler versiaghe model. Of particular interest to us is
the fact that these correspond to some of the daifion diagrams found for the three-stage
BRSV model.

One of the necessary conditions Hadeler and Ga€ithlavez gave for backward
bifurcation to occur for the basic CG model wag tRashould be far from 0, remembering that
it is also assumed th& <1. This corresponds to a poor education prograname,equates to
E not being too small compared . On considering the sets of parameter values fmed
the bifurcation diagrams in Figures 5.1, 5.2 ar8libwould appear that we have a similar, if
slightly more complicated, situation for the exteddCG model. In order for multiple equilibria
(rather than simply backward bifurcation) to beser& it seems as though neitherffor g,
can be too small compared #,. In other words, it might be conjectured that foultiple
equilibria to be at all possible in the extended @Gdel, whether via forward or backward
bifurcation, neither of the education programmesnethods must be too effective. It is also

worth noting that the death rate must not be togeléor such curves to be possible here.

5.1 Stability patterns

Dynamic Bifurcation Diagram
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FIGURE 5.4: A bifurcation diagram demonstratingttit is possible for a particular endemic
equilibrium to be unstable while the gradient & tiifurcation curve at the point corresponding

to this equilibrium is negative.
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Now it has been established that complex bifurcatimgrams of the type observed for
the three-stage BRSV model are also possible ®extended CG model, we turn our attention
to the issue of stability. On the limited evidemfahe diagrams given in Figures 5.1, 5.2 and
5.3 it might be conjectured that a particular endeeaguilibrium is LAS if, and only if, the
gradient at the point on the bifurcation curve esponding to this equilibrium is negative.
However, not only would such a conjecture for tkeerded CG model be false, but we also
observed patterns that we had not seen in anyeditédrature on backward bifurcation. Before
considering this latter phenomenon we give an exangpshow that stability is not related to
the gradient of the bifurcation curve in the simpigy that it was for the basic CG model. The

diagram in Figure 5.4 was obtained using the falhgwparameter values:

a=40, u=0016,8 =25, B,=55, B,=60, y, = 007 andy, = 004

We now demonstrate an interesting stability patterising from the extended CG
model. The two-stage BRSV and basic CG models ttev@roperty that for any particular set
of parameter values correspondingRp > there exists a unique LAS endemic equilibrium.
By extending the two-stage BRSV model to three etage found that it was possible for
multiple supercritical endemic equilibria to existurthermore, when multiple supercritical
endemic equilibria are present it is quite possibét one of them is unstable. However, for all
of the examples that were considered for the tatage BRSV model it was found that at least
one of the resulting supercritical equilibria is 8A In particular, when there is a unique
supercritical endemic equilibrium, it is LAS. ORrtending the CG model we find that this is
not necessarily the case. The bifurcation diaggaran in Figure 5.5 was obtained using the

following set of parameter values:

a=45, u= 0013 =25, B,=55, B, =60, y,= 01landy, = 004

It can be seen that there are no subcritical endlequiilibria but there are multiple supercritical
endemic equilibria for a narrow range of valueshef bifurcation parametey,. Bifurcation
curves with such shapes were also observed fothttee-stage BRSV model. What is new
here, however, is that there existanague but unstable supercritical endemic equilibrium for a
range of values of the bifurcation parameter. tmeo words, we have found regions of the
parameter space for whidR, > hkut for which no LAS endemic equilibrium exist§his does
raise some interesting questions. Do stable Liyttes exist for these parameter values, or does

some sort of chaotic behaviour result?
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Dynamic Bifurcation Diagram
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FIGURE 5.5: This bifurcation diagram demonstrétes existence of a unique and unstable

supercritical endemic equilibrium for regions i fharameter space.

We emphasise here that the phenomenon observadurefs.5 is not as a result of a
lack of sensitivity in the plotting routine. Inder to demonstrate this fact we now perform a
precise numerical calculation wit#, = 005 in order to check numerically the stability result

implied by the bifurcation curve in Figure 5.5. (rearising the system of equations about the

endemic equilibrium solutioS,,E,,,E,,,I, Jve obtain the Jacobian
Bl -y, 0 0 —BS.tall-y,—V,)
¥, —Ble—u 0 -BEs +ay,
Y, 0 A -B.E, tay,
Bl Bil. Bl B.S. +BE,+BE, —a-u

This can be reduced to3x3 matrix by usingE,, =1-S, —E, — I, in order to eliminateE,,
from the differential equations, thereby elimingtithe corresponding row and column in the

Jacobian:

_ﬁsle_wl_wz_,u 0 _IBSSe+a(1_}/l_y2)
¢, _151 e " H _:81Ee1+ay1 .
(B =Bl (B.=BI)l. BS +BE.+B,(1-S -E,-2l)-a-u
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From the fourth equilibrium equation we haysS, + S E, + B,E,, —a - =0, so that entry
(83) of this matrix can be simplified considerably

,33Se +181Ee1 +132(1_Se _Ee1_2|e)_a_:u::838e +131Ee1+182Ee2 _:lee —a-u

=_ﬁ2|e'
The characteristic equation is thus given by
—,33|e‘¢//1‘¢//2‘,u—/1 0 —,B3Se+0'(1—y1—y2)
de 401 _:81|e_:u_/] _:81Ee1+ay1 =0.
(ﬁS_ﬁZ)Ie (ﬁl_ﬁZ)le _ﬁZIE_/]

At this point we note that a study of the locayraptotic stability of the endemic
equilibria could, in theory, be performed by analgsthe coefficients of the resultant cubic
equation in A via the Routh-Hurwitz criteria. However, we ablgaknow that no
straightforward stability result will be forthconginand so this is not pursued here.

The bifurcation parametep, was set at 0.05, giving, =1.079726 ...With the given

parameter values the unique endemic equilibriuoaisulated to be

(S,,E,.E.,.1,) = (0.091709..0.339074..0565830..0.003387..).

These equilibrium values have been writter0#91709.., and so on, to emphasise the fact that
all calculations were performed to the highest iéssdegree of accuracy in order to avoid
coming to false conclusions through the accumutatib rounding errors. When substituting
these into the characteristic equation we find twai of the eigenvalues have a real part
approximately equal to 0.00348, showing that thidegnic equilibrium is indeed unstable. This
instability does occur at very low levels of infiect, and over a relatively narrow range of
values of the bifurcation parameter (and, as aamunsnce, over a particularly narrow range of
values ofR;). This phenomenon is investigated further inftil®wing section.

Before moving on to consider the situation froniakastic point of view, we note that
the work considered in the current section posesesmteresting questions with regard to
dynamic phenomena. Indeed, these might be wortsumg in a subsequent paper. The
Principle of Exchange of Sability (see Boldin (2006), for example) is certainly velet here.
This is valid when one stationary state losestébibty to another stationary state in a smooth
way. At a saddle-point bifurcation (also known asangential bifurcation or turning point
bifurcation) one of the eigenvalues is zero, andhis case the stability of the branches
representing the various endemic equilibria wilbeled on the value of the other eigenvalues at

the turning point (see Kuznetsov (2004) for de}aildt might be possible to look at the
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nongeneric case of a vertical bifurcation and uhfolwith two parameters (see van den Bosch
et al. (1988) and Kuznetsov (2004) once more). The dgiom of the state space also needs to
be taken into account since Hopf bifurcation maguoovhen this dimension is at least two.

Indeed, it may be the case that Hopf bifurcatioorésent in Figure 5.5.

6 Probability of extinction for the basic CG model

We now calculate, for the stochastic version oftiaeic CG model, the theoretical probability
of extinction, given that one infected individualintroduced into the population at the DFE.
Before proceeding with the calculation, it is wopibinting out that in general the probability of
extinction does depend on the initial conditioris.for example, the initial number of infected
individuals was greater than one then we would explke corresponding probability of
extinction to be reduced. Should, be large then the introduction of even one infécte
individual into the population could lead to a hugbreak of the disease in the population. If
the spread of the disease was particularly rapd this might give rise to a bottle neck in the
supply of susceptible individuals, which may inntwause the pathogen to go extinct. Since we
are only considering here values Rf close to one, the possibility of ‘extinction aftée first
outbreak’ is not particularly relevant here, altgbhuan account of this phenomenon can be
found in Taxidis (2008).

At the DFE the state of the system is given by

Y oJ.
pry g

(SDFE 'VDFE N DFE) = (

Let us consider the discrete branching proc{é(sé consisting of théth generation size of the
continuous branching proceéls(t)), given that)z0 =1(0) = 1 The size of the first generation,
)21, is the total number of individuals that have bé@ectly infected by the initially infected
individual, then)z2 gives the total number of individuals that haverbdirectly infected by the
)21 individuals in the first generation, and so one Wote thatl (t) = Ofor some timd if, and
only if, )Zk =0 for some generatiok, and so the processéls(t)) and ()Zk) share the same
extinction probabilities (see Grimmett and Stirza@001), p. 177).
We next formulate the probability generating fuostfor ()Zk) Let

Bu . By

A:ﬁSDFE+ﬁ\/DFE+a+/J:/J+¢/ /,I+l//

+a+ .
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It shall be assumed that the length of time thah&acted individual remains infectious follows
a negative exponential distribution with meaf{ia + ). Let N be the random variable
representing the number of individuals directlyeicted by one infected individual through its

period of infectiousness. It is clear tHa{N =0) = (a + )/A. We also have

P(N =1)=A_(Z+”)xa2”.

Continuing in this way

PN =)= L2482

from which it follows that the probability genermagi function of the number of individuals

infected by one infected individual:

ot g8} oot

The probability of extinction,P(c )is given by the smallest positive solution xa=G(x . )
+ A-(a+ -
(=3 #{1_( (@ #)jx}
A A

a+p  _(a+py+p) _ 1
A-(a+p) Bu+ By R,

Solving the equation

gives

Xx=1lor x=

Thus extinction is certain unle$ > , ih which caseP(») =1/R, .

6.1 Stochastic ssmulations

Stochastic simulations were carried out in ordersée whether the presence of backward
bifurcation might lead to results different frometlanalytic probabilities of extinction given
above. Programmes in C++ were developed in oalpetform the simulations, and we began
by testing the programmes for situations in whigtwiard bifurcation is present. The important
points made by Griffiths (2007) concerning stocitasimulations apply here also. These
include details relating to the population sizey times, random number generation and the
definition of quasi-stationary distributions conditional on non extinction (see also Renshaw
(1991), Clancyet al. (2001), Dickman and Vidigal (2002), Beah al. (1997) and Pollett
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(2004)). Using similar parameter values to thoseduin the paper by Hadeler and Castillo-

Chavez, it is found that forward bifurcation occutsen:
a=30, u=02, =80, B=04andy=0.025

The corresponding bifurcation diagram is given iigufe 6.1.1, noting that the unique
supercritical endemic equilibrium is always stalalge given by Theorem 3.1.1 for the basic CG
model. We have that” =¢/(R, =1) = 0.3428.. here, as can be seen in Figure 6.1.1.

Table 6.1.1 compares, for a range of values of lifiercation parametery, the
theoretical values folP( With those obtained via the simulations. The pafin size and
the number of simulations used to estimate eathesfe extinction probabilities were 5000 and
4000 respectively. By using a normal approximationthe binomial distribution we may
construct approximate confidence intervals from head the simulated probabilities of
extinction in Table 6.1.1 to see if they contaire torresponding theoretical values. For
example, an approximate 90% confidence interval thee probability of extinction when
¢ =02 is given by[0.74560.7680] which does contains the theoretical value.fakt, as is
easily checked, all such confidence intervals dontlae corresponding theoretical value for
P(«). We see therefore that there is excellent agretimetween theoretical and simulated
outcomes in this case. It turns out that the samewal values for the probability of extinction do
generally match the theoretical values very clodelysets of parameter values leading to

forward bifurcation.

Stability Bifurcation Diagram
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FIGURE 6.1.1: A bifurcation diagram for the ba€ié model, exhibiting forward bifurcation.
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Y R, TheoreticaP(w) SimulatedP(co)

0.5 0.8036 1.0000 1.0000
0.4 0.9167 1.0000 1.0000
0.3 1.0750 0.9302 0.9310
0.2 1.3125 0.7619 0.7568
0.1 1.7083 0.5853 0.5805
0.05 2.0250 0.4938 0.4818
0.0 2.5000 0.4000 0.4113

TABLE 6.1.1: A comparison of theoretical and siateld probabilities of extinction for the

basic CG model using a set of parameter valuesngad forward bifurcation.

It should be noted that increasing the populatine §om 5000 does not, for the values
of ¢ used in Table 6.1.1, significantly affect the siated extinction probabilities. In fact, the
population size needs to be reduced considerabthése probabilities to be altered in any way.
This is because, as can be seen from Figure @Hellevels of disease prevalence within the
population are relatively high for this particulset of parameter values, even whBp is
reasonably close to 1. Therefore even fairly smalpulations will have a relatively large
number of infected individuals at quasi-equilibriuthereby reducing the possibility that a

particular random fluctuation will result in exttmn.

Stability Bifurcation Diagram
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FIGURE 6.1.2: A bifurcation diagram for the basiG model, exhibiting backward

bifurcation.
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We now turn our attention to the situation in whizdickward bifurcation is present.
The following set of parameter values lead to tifartation diagram given in Figure 6.1.2,

noting that the stability pattern is as predictgd’beorem 3.1.1:
a=40, u=01, =60, =30andy= 002

A series of simulations was carried out wigh= 018This gives R, =0.9930, so the
theoretical probability of extinction for this seft parameter values is 1. Table 6.1.2 gives the
simulated probability of extinction as the popuatisizeN is varied. Each probability of
extinction was estimated using 10000 simulatioAs. well as corroborate the results obtained
for the probabilities of extinction for the two-gea BRSV model by Griffiths (2007), our
findings offer a fascinating glimpse of the sublilkk between deterministic and stochastic
phenomena associated with our model.

It is possible to provide heuristic explanatioos the interesting relationship observed
in Table 6.1.2 between the population size andptiebability of extinction estimated via the
simulations. As can be seen from the bifurcatiomve in Figure 6.1.2, there exists, for
¢ =018, an upper LAS subcritical endemic equilibrium aawd unstable lower one. The
unstable endemic equilibrium lies on the separdtixthe domains of attraction for the LAS
DFE and the LAS endemic equilibrium. It would segiausible that these deterministic
domains of attraction correspond in some way tdabdistic domains of attraction (for the
absorbing state (t) = @nd the quasi-equilibrium respectively) in thechtstic version of the
model. The probability of extinction may be retht® both the likelihood with which these
domains of attraction can be reached and, in cBwewhich a quasi-equilibrium has been
attained, the ability to avoid an extinction duedandom fluctuations.

For particularly small population sizes, the lowmhers of individuals at quasi-
equilibrium make it relatively likely that, over @ogically relevant periods of time (i.e. over
several generations), a random fluctuation wilutem extinction (since in this case any quasi-
equilibrium will be close to the absorbing stat&hus, as when considering the possibility of a
supercritical endemic invasion when forward bifti@ma is present, we would expect the
simulated probability of extinction to tend to 1the population size is decreased.

However, things are very different to the previamample when the population is
increased rather than decreased. When considéréngossibility of a subcritical invasion of
the disease in the presence of backward bifurcattoneeds to be borne in mind that the
probabilistic domain of attraction for the quasitdifprium tends to get further from the
absorbing state as the population size is increaddtis, on the introduction of one infected

individual into the population at the DFE, the krdhe population size the less opportunity
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there is for initial random fluctuations to resinta state lying in this domain of attraction. For
very large population sizes this domain of att@ctoecomes virtually impossible to reach, and
extinction is very likely to occur.

From the above discussion it would seem that whaskward bifurcation is present,
subcritical probabilities of extinction will alwaytend to 1 as the population becomes either
extremely large or extremely small. It is the imiediate population sizes that are of more
interest. In these cases the population is atitficently small for there to be a realistic
prospect of a quasi-equilibrium being attained,l&vhot so small that this quasi-equilibrium is

not sustainable over ecologically relevant perioidsme.

Population sizé\ SimulatedP ()
50 1.0000
100 0.9963
150 0.9846
200 0.9840
250 0.9766
300 0.9718
400 0.9702
500 0.9739
800 0.9797
1000 0.9800
2000 0.9834
5000 0.9870
10000 0.9919

TABLE 6.1.2: An illustration of how, for a set gfarameter values allowing subcritical

endemic equilibria to exist, the estimated proligbdf extinction varies with the population

size.
Population sizé& 90% confidence interval 99% conficeinterval
300 [0.9691, 0.9745] [0.9675, 0.9761]
400 [0.9674, 0.9730] [0.9658, 0.9746]
500 [0.9713, 0.9765] [0.9698, 0.9780]
800 [0.9774, 0.9820] [0.9761, 0.9833]
1000 [0.9777, 0.9823] [0.9764, 0.9836]

TABLE 6.1.3: A series of confidence intervals the extinction probabilities
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We may calculate confidence intervals for the $atad values ofP(«) shown in

Table 6.1.2 in order to add further weight to orgusnent. Table 6.1.3 provides, for some of
the intermediate population sizes, both 90% and 988ffidence intervals for these
probabilities. The results in Table 6.1.2 seemindicate the existence of an ‘optimal’
population size for which the probability of extifon is least. This will be some function of
the parameter values and consequently of the lgiviie disease in the population at quasi-
equilibrium. For our particular example the prevale of the disease at the subcritical LAS
endemic equilibrium corresponding #=  0i8quite high so the disease can be sustained in
a relatively small population. For a situationmihich the proportion of infected individuals is
at a lower level at endemic equilibrium it is likethat this optimal population size will be

greater.

7 Probability of extinction for the extended CG model

Further programmes were developed to allow stoithsishulations of the extended CG model.
Of particular interest here is the probability afiection for the case in which there is a unique
but unstable supercritical endemic equilibrium hie deterministic version of the model. For
R, >1 the theoretical probability of extinction for tls¢ochastic version of the extended CG

model is given by
_@+tp@, ty, t )

P(c0) .
1/11181 +‘//2182 +ILIIB3

The calculation is similar to that for the probékpibf extinction for the basic CG model, noting
that nowA =B E ., + B,Epee, + 5:S,e + @ + 4. By considering Figure 5.5 it can be seen

that the parameter values

¢, =005, ¢,=017, a =45, u= 001,45 =25, B,=55 B,=60, y, = 011 and
y, = 004

do in fact lead to a unique but unstable supecatitendemic equilibrium. For this set of
parameter valueP(«) =0. 9262
The stochastic simulations were initialised byaddircing one infected individual into

the population at the DFE, given by

- H ) v,
(SDFE’EDFEI’EDFEZ’IDFE) ([//14‘[//2+'LI’[//1+[//2+'[1,[//1+[//2+IL[,OJ.
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Population sizes ranging from one hundred to omelted thousand were used. The presence
of the absorbing staté =0 in conjunction finite and approximately constanpplation sizes
means that the stochastic model cannot possessiea endemic stationary distribution.
However, when the parameter values are such tleterministic LAS endemic equilibrium
exists, the stochastic versions of both the basicextended CG models do frequently appear to
settle down into some sort of steady-state behavi@sulting in what we have previously
termed quasi-equilibria. In these cases it wasddhat the disease is able to persist within the
population for extremely long time periods. Furthere, these quasi-equilibria tend to match
the LAS endemic equilibrium very well indeed. Thisationship between the deterministic and
stochastic versions of the CG models was also wedewhen studying the corresponding
versions of the BRSV models.

We may clarify this quasi-equilibrium phenomengnway of an example. A series of
simulations of the stochastic version of the b&®& model was performed using the following

parameter values (those leading to the bifurcatiagram shown in Figure 6.1.1):
a=30, u=02, 3=80, f=04andy=0.025

with the bifurcation parametey set at 0.3. As can be seen in Figure 6.1.1, tiseaeunique
deterministic supercritical endemic equilibrium fdnis set of parameter values, and the
proportion of infected individuals at this equililom is approximately 10%. The simulations
were initialised by introducing one infected indival into a population of 1000 individuals at
the DFE. On simulations for which extinction didt mccur we saw evidence for the existence
of a quasi-equilibrium for which the average numioérinfected individuals over time is
approximately 100, or 10% of the population, den@tisig a quantitative matching with the
deterministic endemic equilibrium. Despite theatiekely small number of infected individuals,
it was found that once the system had reachedjtiasi-equilibrium then random fluctuations
tended not to lead to extinction over the consioleraun times of our simulations, thereby
implying the presence of a quasi-stationary digtidn. There were occasions when a random
fluctuation resulted in extinction from an appareuoiasi-equilibrium, but these proved to be
extremely rare occurrences, and such events beeasre scarcer as the population size was
increased. It would appear that an infected stagéeting as a weak attractor in a probabilistic
sense.

By way of contrast, we now consider the outcomesiofulations of the stochastic
version of the extended CG model for the situatiowhich there exists a unique but unstable
supercritical endemic equilibrium in the determiicisrersion (with parameter values given at

the beginning of this section). Each of the simafes was initialised by introducing one
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infected individual into a population of 10000 ividiuals at the DFE. A larger population size
was used here than since the proportion of infettdividuals at the deterministic endemic
equilibrium is relatively small, and we do requilhe absolute number of infected individuals in
the population corresponding to this endemic eguilm to be large enough to determine
whether or not there is any evidence of quasi-dgyiim behaviour.

The outcomes of our simulations are potentiallgyviateresting. With a population
size of 10000, there are approximately 34 infedtetlviduals at the unstable deterministic
endemic equilibrium. However, in none of our siatidns did we observe any quasi-
equilibrium behaviour for which the average numbkeinfected individuals was approximately
this number. On the other hand, potential quasilibgium behaviour was observed for which
the average number of infected individuals was iciemably greater than 34, typically of the
order of 500 individuals. We found either thatimstion occurred almost immediately or the
number of infected individuals built up over tinegeveral hundred. We may, on the basis of
these observations, ponder over the mechanismdrifiis apparent quasi-equilibrium and then
consider whether or not there is a quasi-statiodatyibution present. In what follows we may
merely speculate on the answers to these quesaodsprovide some heuristic explanations.

Indeed, a more detailed analysis could prove texttieemely difficult.

Supercritical invasion (stochastic)

400 600 800
| | |

Number of infected individuals

200
|

© T T T T T T

0 10 20 30 40 50 60
Time
FIGURE 7.1: A realisation of a stochastic supdigai invasion of the disease for the extended
CG model where the parameters are such that thésés ea unigue unstable deterministic

supercritical endemic equilibrium.
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We considered those realisations for which extamctilid not occur in the very early
stages of the run. Similar initial behaviour wdmserved for each of these realisations, with
invasions resulting in up to 700 infected indivitbubeing present in the population. In these
situations it was almost always the case that, dheenumber of infected individuals had
peaked, a decline occurred, eventually resultingxtinction. An example of such a realisation
is shown in Figure 7.1. There were also isolategitples of the disease persisting at these
higher levels for slightly longer periods of timédowever, even in these instances, it would
seem that the system does not remain at the qgasibeium for long enough to indicate the
presence of a quasi-stationary distribution.

Having established, empirically at least, that asipstationary distribution is unlikely
in this case, we may turn our attention to the hess of speculating as to which aspect of the
model is driving this behaviour. Let us consid@arce more, the bifurcation diagram given in
Figure 5.5. The geometry of the bifurcation cunveans thaty, does not have to be reduced
much below 0.05 before there exists a determinetdemic equilibrium that is both LAS and
at a considerably higher level than the unstabbeenc equilibrium present whegr, = 005.

In fact, if ¢, = 004 there is a deterministic LAS endemic equilibriuon Which approximately
6% of the population consists of infected individu@orresponding to 600 infected individuals
in a population of 10000 individuals. This coubdl,course, be a numerical coincidence, but we
cannot rule out the possibility that the absence afeterministic LAS endemic equilibrium
when ¢, = 005 leads to stochastic behaviour in which the systemweakly attracted to a
quasi-equilibrium corresponding to a nearby deteistic LAS endemic equilibrium. If this
were the case then the lack of a quasi-stationiatyittition may be a manifestation of the fact
that the parameter values do not quite correspandhits deterministic LAS endemic
equilibrium. Although, initially, the changes imgulation structure caused by the invasion of
the disease favour further invasion, the parametieles are such that this cannot be maintained.

We now consider the problem of comparing the sitedlsand theoretical extinction
probabilities for the stochastic version of theeexted CG model with parameter values such
that a unique unstable deterministic supercritieademic equilibrium is present. The
probabilities of extinction are calculated analgtig under the assumption that the population
size is effectively infinite in the sense that supply of susceptible and educated individuals is
not only inexhaustible but also always in the saat®, that at the DFE. However, in the
stochastic simulations the population sizes arigefand the number of individuals in each class
is allowed to change, as would be the case inldife@pidemic. Therefore the proportions of
susceptible and educated individuals will not gaterremain the same as that at the DFE

during the course of the simulation. To a largeet however, the extinction probabilities are
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determined by the behaviour of the epidemic in ithidal stages of an invasion and it is
generally possible to obtain a very close matchveen the simulated and analytic extinction
probabilities, even by using relatively short rumds in the simulations. In fact, so long as the
run times were not too short, we found that ourugaitions gave estimates that were quite close
to the theoretical value 0.9262 obtained from theameter values given at the beginning of this
section. This was also true when obtaining edémé#or the probability of extinction for the
basic CG model with parameter values as givenegarlin this case estimates close to the
analytic extinction probability of 0.9302 resultedm even quite short run times.

On the other hand, from the definition of the ptuliy of extinction, we might expect
to obtain ever better agreement between the sigdikatd theoretical extinction probabilities by
extending the run times of our simulations. Howewse also know that for finite and
approximately constant population sizes, as in siotulations, extinction is bound to occur
eventually. It is at this point that we need tketaccount of whether or not an apparent quasi-
equilibrium is able to persist for ecologicallyeeant periods of time. When a quasi-stationary
distribution is present, then, so long as the patput size (and hence the number of infected
individuals at quasi-equilibrium) is not too smale may increase the run times considerably in
order to obtain more accurate estimates for therétieal probability of extinction. However,
the presence of phenomena such as limit cyclebandeterministic model might mean that
increasing the run time gives considerably moreoopiities for random fluctuations to result
in extinction, and in this case simulated prob#bsi of extinction are bound to show a
corresponding increase. This latter scenario dpeear to be the case for the particular set of
parameter values we are currently considering fier éxtended CG model. Simulations do
indeed bear this out, with the simulated probapbilit extinction tending to 1 as the run times
increase. Thus the degree to which the simulateldtlzeoretical extinction probabilities agree
can, in such situations, be very sensitive witlarddgo the run times.

This would appear to be a difficult problem to leeccompletely, and indeed it may be
worth considering alternative approaches such @sethdopted by Kuske et al. (2008) or Allen
and van den Driessche (2006). For example, irdtter paper the authors utilise a stochastic
differential equation model, noting that their detmistic and stochastic models agree very
well when N =1000. There is also the possibility th&, may depend oM in some way.
Indeed, Nasell (2002) notes that, with regard ® s$hochastic version of the model he is
studying, there are three identifiable regionshef parameter space with qualitatively different
behaviours, and the boundaries between these megiwa dependent oN. He also

acknowledges that this is a mathematically challenpgroblem.
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8 Expected timeto extinction for the basic CG model

For the two-stage BRSV model Griffiths (2007) fousmime interesting results in this regard,
although, because of the analytic complicationsyals not possible to state any definitive
results. However, the current situation is morenpsing since we are able to obtain a precise
analytic result for the expected time to extinctgiven that one infected individual enters the
population at the DFENote that this is in contrast to the approach aztbjsty Nasell (2002),
who calculates the time to extinction from the dusgéationary distribution.

Let T be the random variable representing the time tm&ion given that one infected
individual is introduced into the population at th&E. Then, using a result from Karlin and
Taylor (1975, pp. 149-150), it follows that

ey K | _aru | uy In( (@+pu+y) ]
Bu+pBy \a+u-220 1 pu+ By \(a+u)(u+y)-pu+ By

HHY

This may also be written as

E(T)=—* In( 1 j
R(a+u) \1-R,

which is not defined forlR, 21, in which case we writds(T) = . We are thus interested in
only the subcritical case here. In particular vemsider whether the presence of subcritical
endemic equilibria exert an influence &GT to)the extent that significant differences between
the theoretical and simulated values are observed.

We first demonstrate that our programmes are wgrkiorrectly in the sense that they
lead to simulated estimates fB(T that are in good agreement with the corresponaiadytic
values under what we may regard as ‘ideal’ conaétioWe start therefore with the following

set of parameter values leading to forward bifliocat
a=30, u=02, 3=80, f=04andy=0.025

The corresponding bifurcation diagram is given igufe 6.1.1, and/(R, =1) =0. 342% this
case. Various values ¢f such thatR, < Iwere used in the simulations, and the resultsuf f
successive runs using each of these values arensholiable 8.1. The population size used for
each of these simulations was 3000, and each detifoeE(T ) was obtained by taking the
mean extinction time from 5000 runs. It can bengbat there is very good agreement between

the simulated and theoretical values given in T8ule
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7/ R, TheoreticaE(T) SimulatedE(T )

0.5 0.8036 0.6329 0.6284, 0.6483, 0.6294, 0.6301
0.75 0.6250 0.4904 0.4900, 0.4879, 0.4921, 0.4864
1.0 0.5208 0.4414 0.4361, 0.4542, 0.4431, 0.4544

TABLE 8.1: A comparison of theoretical and simalhtexpected times to extinction for the

basic CG model using a set of parameter valuesngad forward bifurcation.

We next run simulations for the system with paramnealues given by:

a=40, u=02, =60, B=30andy=0.025

The corresponding bifurcation diagram, exhibitiragkward bifurcation, is shown in Figure
8.1.

Stability Bifurcation Diagram

0.10 0.15 0.20 0.25 0.30
1 1 1 1 1

0.05
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0.00

0.0 0.1 0.2 0.3 04 0.5
psi

FIGURE 8.1: A bifurcation diagram for the basic @®del exhibiting backward bifurcation.

It can be shown that the vertical turning point baerdinate(t//(l .1 j) where
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g\ B

although the estimate af(1’) = 04 from the bifurcation diagram will certainly suféicfor
present purposes.

We compare theoretical and analytic valuesE¢F using various values af greater
thang/(17 ). In particular, we are interested in determiniigether or not there is any evidence
that the deterministic LAS subcritical endemic diguum present whery is slightly smaller
thang/(17 ) is able to influence the stochastic behaviouhefdystem for slightly larger values
of ¢ (for which no deterministic endemic equilibria aresent). Indeed, if this were the case,
and an ecologically unstable quasi-equilibria oimgedly resulted wheny was just above
w(l?), then we might expect the simulated value€¢F to pe significantly greater than the
corresponding analytic values. The results of shmulations, using the parameter values
leading to the bifurcation diagram in Figure 8.k given in Table 8.2. The conditions for each

simulation were the same as those used to obtairetults in Table 8.1.

7] R, TheoreticaE(T ) Simulated(T )
0.42 0.9447 0.7296 0.7664, 0.7680, 0.7515,04.77
0.44 0.9375 0.7041 0.7534, 0.7366, 0.7113, 0.7241
0.6 0.8929 0.5956 0.6168, 0.5862, 0.6082, 0.6140
1.0 0.8333 0.5119 0.5116, 0.5119, 0.5063, 0.5174

TABLE 8.2: A comparison of theoretical and simathtexpected times to extinction for the

basic CG model using a set of parameter valuesnig&d backward bifurcation.

In Table 8.2, it may be seen that valuesyofjust abovey/(1? )tend to lead to the
simulations giving significant overestimates foe ttheoretical values oE(T ,)but as we
increasey there is ever better agreement between the siedukad theoretical values. We
feel that these results, though not totally coriekjsdo lend weight to our argument concerning
the possibility that ecologically unstable quagitéhbria are present for values gf just above
(1), and that the presence of a nearby deterministiemic equilibrium does manifest itself

as a very weak attractor for the stochastic systierieed, we found on considering a number of
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individual runs, that the overestimates mentiorteaa, wheny was just abovey(1?), tended
to be caused by a very small proportion of reldyiveng-lived, but still ecologically unstable,

quasi-equilibria.

9 Moreunusual bifurcation diagrams

We have thus far only analysed the system congisfiran isolated core population of constant
size. It is now time to consider the populationaasvhole. We expand on some of the
interesting ideas that were briefly considered ladéler and Castillo-Chavez towards the end
of their paper. We make the point here that mudhe content of this particular section is not
new. However, due to the brevity of the discussiotihe original paper we feel that these ideas
do deserve to be explained in a little more detail] ought also to be considered within the
context of the extended CG model.

The basic CG model arose from the following moneegal model:

%?sz—Ar(I,C)—,uA (9.1)
%zAr(I,C)—,B%—WSﬁ“G(l—V)' -8, (9-2)
Y B
o T B o rah - (9:3)
d _/&+p

and G c al -, (9.4)

where the total population siZe is constant but the core group si€eis not, in general,
constant. We have thd® = A+C=A+S+V +| whereA is the sexually inactive non-core
group. The functiorr(1,C) describes the rate of recruitment into the cooaigrfrom the non-
core group. We may, once more, look for endemiglibgia by setting the time derivatives to
zero. If (A,S.V,.l,) is an endemic equilibrium of the above system then
C.=S.+V,+1,=P-A,. Equation (9.1) giveu(P-A,)-Ar(.,C,)= 0from which we
see thatAr(l,,C,)=4C,. On substituting this into (9.2) we obtain thaldwing set of

equilibrium equations:

|
KC.- P -y, +al-p)l, - 485, =0,

e

48, = FrE= 4y, - N, =0

e
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£, + BV,
C

e

and -al, -, =0,

which is, except for the fact th@tis now C, instead of 1, identical to the equilibrium equaso
for the isolated core group.

Our previous equilibrium results for the basic C®del have been in terms of
proportions of individuals in the core group. Iwer to use these results to obtain information
about absolute numbers of individuals at equilitjiuwe adopt notation allowing us to
distinguish between proportions in the core anakits numbers. In keeping with Hadeler and
Castillo-Chavez we use an overbar to denote prigparin the core group, so that
andl =

S==,V =

Olw
0l<

i
=

Thus if (§e,\7e,l_e) is an equilibrium solution for proportions in tleere then an equilibrium

solution for the core group of the above model whié (CeSe,CeVe,Cel_e). From
Ar(l,,C,) = uC, we obtain(P-C,)r(l,,C,) = 1., giving us

_r({,C)P
° r(le’ce)+ﬂ.

Let us now assume that the functio(i,C) is in fact a function of the proportion of
infected individuals in the core group,=1/C, so that we may write(I1,C hsr(l). This
might be the case if the figure reported, with rdga the prevalence of the disease, was the
proportion of infected individuals in the core gpotather than the absolute number of infected

individuals. We then have that

which shows thatC, is an increasing function O‘f(l_e). It would seem sensible to expect that
the rate of recruitment into the core decreaseswine proportion of infected in the core group
increases, so tha‘l(l_) is a decreasing function df. If this were the case then we see Gat
is a decreasing function df,. The absolute number of infected individuals @ikbrium is

given by
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We thus have the total number of infected individwa equilibrium, |, as a function of the
proportion of infected individuals at equilibriunh,. This really is quite interesting since we
also have the bifurcation parametgr as a function ofi, (see (3.1.1)). This means that we
have a pair of parametric equations connectingnd¢ , and may thus plot bifurcation curves
for the total number of infected individuals rathiean just the proportion in the core. What is
also interesting is that even thou@h is, under our current assumptions, a decreasimefifin

of I, itis quite possible that, may not be a decreasing bf. It turns out, as a consequence
of this, that these new bifurcation curves can heat@er surprising shapes. Hadeler and
Castillo-Chavez citer(l_)z kl(l—k2 I_) as an example for the recruitment rate, wherand k,

are positive real numbers. In this case the par&meguations are given by

T )= klPI_e(l_kZI_e) Ty — o~ 0’(1—}/)|_8+,Ll i
)= gt A v =R e (A ).

Absolute Bifurcation Diagram
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FIGURE 9.1: A bifurcation diagram showing the emiteequilibria for the absolute number of
infected individuals in the core for the extended @odel.

For the extended CG model we have, for absolutebeusnof infected individuals, the

bifurcation curve defined by the following paranetquations:

Ie(l_e) - klPI_e (1_ k2|_ez ,
(kl + ,U) - k1k2|e
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WId+XIZ+YI, +Z
BB +HaBy, +aB,A-y,) + (B, + B,) ~ BB} + @+ u-B)’

‘/jl(l_e) ==

with W, X, Y and Z as given previously. This leads to some partitplaomplex and
interesting shapes of bifurcation curves. For elamthe following set of parameter values

(similar to the ones used by Hadeler and Castillex@z):
a=40, u=01,B =25, 3,=55 B,=60, y, =007 andy, = 004

gives rise to the bifurcation diagram in Figure @liere we have usek = Odnd k, = 30
(again, as suggested by Hadeler and Castillo-Charata total population size of 10000.

From Figure 9.1 it can be seen that there is nbt the potential for multiple endemic
equilibria to be present but that there is alsopbgsibility that distinct values of the bifurcatio
parameter may give rise to the same absolute numbénfected individuals at endemic
equilibrium. It needs to be borne in mind, howeveat in such cases the size of the core group
will not generally be the samelhis highlights a potential difficulty in this cagéth regard to

estimating the size of the population at risk @& size of the core group from prevalence data.

10 Conclusions

In this paper we have investigated some of the ntielebehaviours, in the region of the
parameter space ne®;, = , df both a core group model for the spread ofxaaky transmitted
disease and an extended version of this basic niociporating two educated classes. While
it might appear obvious that increased model coxifyiewill give rise to more complicated
dynamics, the actual nature of the resulting phesr@mmight not be so clear-cut. Our aim here
has been to highlight a number of the interestiggadhic possibilities that do arise when
considering models of increasing complexity.

We proved first that the local asymptotic stapilif any endemic equilibrium for the
basic CG model is related to the gradient of tHerbation curve at the point representing this
equilibrium. This implies in particular that inglpresence of backward bifurcation the resultant
upper and lower endemic equilibria are always LA8 anstable respectively. Although in the
deterministic model this means that there is theng@l for a subcritical endemic equilibrium
to exist, it is not generally possible for the dise to invade at the DFE whd®) < oh the
introduction of a small number of infected indivads.

For the extended model we found that there is tssipility for bifurcation diagrams to

exhibit forward bifurcation while simultaneously gs@ssing two subcritical endemic equilibria
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for some values of the bifurcation parameter. €hdiagrams possess similar shapes to the ones
obtained for the three-stage BRSV model. The lgtalpiatterns also become less predictable,
and there was certainly no simple result correspanto the one for the basic CG model
relating the local asymptotic stability of endenreiguilibria to the gradient of the bifurcation
curve. Indeed, we even encountered an examplaipigae but unstable supercritical endemic
equilibrium (noting here that this was never obedron any of the bifurcation diagrams
obtained for the three-stage BRSV model).

Stochastic versions of the CG models were thenldpgd. These were used in
conjunction with extensive simulations in orderrteestigate the probability of extinction of the
disease. In particular we observed subcriticababdities of extinction that were less than one
in circumstances for which backward bifurcation waresent in the deterministic model
(bearing in mind the caveats in this regard disetidsy Griffiths (2007)). It was found that
population size was a crucial factor in determintimgse probabilities. The disease seems most
able to invade and then sustain a long-term qugsiierium when R, <1 for intermediate
population sizes. Heuristic explanations for fitienomenon were provided. In the simulations
we also observed the invasion of a disease which wacause of the changing population
structure, not able to sustain itself in the forhadong-lived quasi-equilibrium.

Whereas the behaviour with regard to the probghilftextinction was comparable to
that seen in the two and three-stage BRSV modwgdsults on the expected time to extinction
did prove to be rather more conclusive than forBRSV case. For the extended CG model we
observed a situation in which the presence of bacd#tvbifurcation resulted in the simulated
expected time to extinction being somewhat largantthe theoretical value. We argued that
the presence of a nearby deterministic endemidibquim may indeed manifest itself as a very
weak attractor for the stochastic system, resulting very small proportion of relatively long-
lived, but still ecologically unstable, quasi-edguila.

Bifurcation diagrams were also plotted for thel fpbpulation models. This was
achieved by obtaining a pair of parametric equatifor each of these curves. The resultant
bifurcation curves for the extended version of fiid model proved to be particularly
interesting in that we were able to observe noy ¢timé presence of multiple equilibria but also
the existence of endemic equilibria with the sarmelmer of infected individuals for distinct
values of the bifurcation parameter.

In the future some of the work carried out here inalp explain certain subtle dynamic
phenomena observed in real-life epidemics. Indeednight ask ourselves whether any of our
findings do actually relate to previously unexpddbehaviours observed during the spread of a
disease through a population. Further realism @mte complexity) of the CG model might

be achieved by extending it to yet more educatasisels or by building in some spatial element.
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More work is also needed to ascertain whether sofrthe interesting bifurcation diagrams
observed here will ever occur for realistic paranetlues. This of course raises the issue of
parameter estimation.

We have started to explore the interaction betwdeterministic and stochastic
phenomena arising when attempting to make an ejpidemdel more realistic and, as a
consequence, more complex. There is certainlyasting way to go in this regard, although it
would appear that the presence of backward bifimcéh the deterministic differential equation
model has repercussions for the subcritical dyndreiwaviour in the stochastic formulation. In
investigating the CG model we have been able tmborate many of our findings, with respect
to the phenomena of backward bifurcation and mleltgndemic equilibria, for the BRSV

models. In addition, a number of new behavioursehaeen observed.
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