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Abstract

Consider a given system under regime switching whose solution grows at most

polynomially, and suppose that the system is subject to environmental noise in some

regimes. Can the regime switching and the environmental noise work together to

make the system change significantly? The answer is yes. In this paper, we will show

that the regime switching and the environmental noise will make the original system

whose solution grows at most polynomially become a new system whose solution

will grow exponentially. In other words, we reveal that the regime switching and

the environmental noise will exppress the exponential growth.
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1 Introduction

One of the important problems in the study of stochastic differential equations is to
reveal whether stochastic perturbations have significant effects on the underlying systems
which are described by ordinary differential equations. In this paper we will consider the
following problem: Can the regime switching and the environmental noise work together
to make a given system whose solution grows at most polynomially become a new system
whose solution will grow exponentially?

∗Corresponding author. E-mail: xuerong@stams.strath.ac.uk
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To explain our problem more clearly, let us begin with an example (the notations used
will be explained in Section 2). Consider a 2-dimensional regime switching differential
equation (also known as a differential equation with Markovian switching or a bybrid
differential equation)

dy(t)

dt
= zr(t) + Zr(t)y(t), t ≥ 0. (1.1)

Here r(t) is a right-continuous Markov chain on the state space {1, 2} with generator

Γ =

(

−1 1
3 −3

)

, (1.2)

while

z1 =

(

−1
1

)

, z2 =

(

1
−1

)

, Z1 =

(

−2 1
−1 −1

)

, Z2 =

(

1 1
−1 1

)

.

System (1.1) can be regarded as that it operates in two regimes and it obeys

dy(t)

dt
= z1 + Z1y(t) and

dy(t)

dt
= z2 + Z2y(t)

in regime 1 and 2 respectively, and the system will switch from one regime to the other
according to the probability law of the Markov chain. In Example 2.2 below, we will show
that for any initial value y(0) ∈ R

2, the solution of equation (1.1) will obey

lim sup
t→∞

log(|y(t)|)
log t

≤ 0.9666 a.s.

This implies that there is a random variable T = T (ω, y(0)) > 0 such that

|y(t)| ≤ t, ∀t ≥ T

with probability one. In other words, the solution of equation (1.1) will, in long term,
not grow faster than the time evolves. Let us now perturb equation (1.1) into a hybrid
stochastic differential equation (SDE)

dx(t) = (zr(t) + Zr(t)x(t))dt+ ξr(t)dB1(t) + σr(t)

(

x2(t)
−x1(t)

)

dB2(t), t ≥ 0, (1.3)

where σ1 = 0 and σ2 > 0, ξ1 = 0, ξ2 = (ξ21, ξ22)
T , and B1 and B2 are two independent

Brownian motions. By setting σ1 = 0 and ξ1 = 0, we here indicate the case where in
regime 1 there is no white noise while in regime 2 the white noise can be added on. In
Example 3.3 below, we show that if ξ2 = (6, 0)T and σ2

2 = 37, then the solution of the
SDE (1.3) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ 0.736 a.s.

that is, the solution will grow exponentially with probability one. The significant differ-
ences between equation (1.1) and its corresponding SDE (1.3) show the important fact
that noise expresses exponential growth.
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The problem addressed in this paper is in the area where the study is to find significant
differences between a given ordinary differential equation and its corresponding perturbed
SDE. The pioneering work in this area was due to Hasminskii [12, p.229], who stabilised
an unstable system by using two white noise sources, and his work opened a new chapter
in the study of stochastic stabilisation. There is an extensive literature concerned with
the stabilisation by noise and we here mention [1, 2, 3, 4, 5, 7, 9, 10, 14, 17, 21, 24, 25]. It
is now well known that noise can be used to stabilise a given unstable system or to make
a system even more stable when it is already stable. A few years ago, Mao et al. [19]
showed another important fact that the environmental noise can suppress explosions (in
a finite time) in population dynamics and this paper made an important impact on the
study of stochastic population systems (see e.g. [8, 13]). Recently, Deng et al. [11] reveal
one more important feature that noise can suppress or expresses exponential growth.

However, most of the papers mentioned above consider only the perturbation by
white noise but not colour noise yet. In this paper, we will develop the theory presented
in [11] to cope with much more general systems where they are subject to both white
noise and colour noise. More precisely, we will consider a given system under regime
switching (colour noise) whose solution grows at most polynomially, and suppose that
the system is subject to environmental noise (white noise) in some regimes. Can the
regime switching and the environmental noise work together to make the system change
significantly? In this paper we will give a very positive answer. We will first investigate the
polynomial growth of hybrid differential equations in Section 2 while, in contrast, discuss
the exponential growth of hybrid SDEs in Section 3. Making use of these results we will
show that noise can expresses exponential growth under regime switching in Section 4.
An important class of linear systems will be discussed in Section 5 while we conclude our
paper in Section 6.

2 Polynomial Growth of Switching Differential Equa-

tions

Throughout the paper, unless otherwise specified, we will employ the following notation.
Let (Ω,F , {F(t)}t≥0,P) be a complete probability space with a filtration {F(t)}t≥0 satis-
fying the usual conditions (i.e., it is increasing and right continuous while F(0) contains
all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0, be an m-dimensional Brownian
motion defined on the probability space, where T denotes the transpose of a vector or
matrix. If x, y are real numbers, then x ∨ y denotes the maximum of x and y, and x ∧ y
denotes the minimum of x and y. Let |x| be the Euclidean norm of a vector x ∈ R

n and
〈x, y〉 be the inner product of vectors x, y ∈ R

n. Vectors x ∈ R
n are thought as column

ones so to get row vectors we use xT . The space of n ×m matrices with real entries is
denoted by R

n×m. If A = (aij) is an n×m matrix, we denote its Frobenius or trace norm
by

|A| =

√

√

√

√

n
∑

i=1

m
∑

j=1

a2
ij
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while its operator norm by ‖A‖ = sup{|Ax| : x ∈ R
m, |x| = 1}. If A ∈ R

n×n is symmetric,
its largest and smallest eigenvalue are denoted by λmax(A) and λmin(A), respectively.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{

γij∆ + o(∆) if i 6= j
1 + γij∆ + o(∆) if i = j

where ∆ > 0. Here γij ≥ 0 is transition rate from i to j if i 6= j while

γii = −
∑

j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is
well known that almost every sample path of r(t) is a right continuous step function. As a
standing hypothesis we assume in this paper that the Markov chain is irreducible. This is
equivalent to the condition that for any i, j ∈ S, one can find finite numbers i1, i2, · · · , ik ∈
S such that γi,i1γi1,i2 · · · γik,j > 0. Note that Γ always has an eigenvalue 0. The algebraic
interpretation of irreducibility is rank(Γ) = N−1. Under this condition, the Markov chain
has a unique stationary (probability) distribution π = (π1, π2, · · · , πN) ∈ R

1×N which can
be determined by solving the following linear equation

πΓ = 0

subject to
N

∑

j=1

πj = 1 and πj > 0 ∀j ∈ S.

Consider an n-dimensional ordinary differential equation with Markovian switching

dy(t)

dt
= f(y(t), r(t), t), t ≥ 0. (2.1)

As a standing hypothesis, we assume that f is smooth enough so that given any initial
values y(0) = x0 ∈ R

n and r(0) = r0 ∈ S, equation (2.1) has a unique solution on t ≥ 0.

As mentioned in the introduciton section, our key aim of this paper is to reveal that
noise expresses exponential growth. For this purpose, let us establish a result that gives
conditions under which the solution of equation (2.1) will grow at most polynomially with
probability one. It should be pointed out that the research in this direction has its own
right. However, our main purpose here is to compare this result with later ones in order
to show clearly that it is noise that expresses exponential growth.

Theorem 2.1 Assume that there are constants h and hi (i ∈ S) such that

2〈y, f(y, i, t)〉 ≤ h+ hi|y|2 (2.2)

for all (y, i, t) ∈ R
n × S × R+. Assume moreover that there is a constant θ ∈ (0, 1) such

that
−diag(θh1, . . . , θhN) − Γ (2.3)
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is a nonsingular M-matrix. Then the solution of equation (2.1) obeys

lim sup
t→∞

log(|y(t)|)
log t

≤ 1

2θ
a.s. (2.4)

Proof. By the theory of M-matrices (see e.g. [20, Theorem 2.10 on page 68]), there are
positive numbers q1, . . . , qn such that

q̄i := −θqihi −
N

∑

j=1

γijqj > 0, i ∈ S. (2.5)

Define
V (y, i) = qi(1 + |y|2)θ, (y, i) ∈ R

n × S.

By the generalized Itô formula (see e.g. [20, Lemma 1.9 on page 49]),

EV (y(t), r(t)) = V (x0, r0) + E

∫ t

0

LV (y(s), r(s), s)ds,

where LV : R
n × S × R+ → R is defined by

LV (y, i, t) = qiθ(1 + |y|2)θ−1〈y, f(y, i, t)〉 +
N

∑

j=1

γijqj(1 + |y|2)θ.

By condition (2.2), we compute

LV (y, i, t) ≤ (1 + |y|2)θ−2
(

qiθ(1 + |y|2)(h+ hi|y|2) +
N

∑

j=1

γijqj(1 + |y|2)2
)

= (1 + |y|2)θ−2

×
(

qiθ
[

h+ (h+ hi)|y|2
]

+
N

∑

j=1

γijqj(1 + 2|y|2) − q̄i|y|4
)

. (2.6)

Choose ε > 0 sufficiently small for

ε < min
i∈S

q̄i
qi
. (2.7)

Then, by the generalised Itô formula again,

E

[

eεtV (y(t), r(t))
]

= V (x0, r0) + E

∫ t

0

eεs
[

εV (y(s), r(s)) + LV (y(s), r(s), s)
]

ds. (2.8)

But, by (2.6) and (2.7), we estimate that, for (y, i, t) ∈ R
n × S × R+,

εV (y, i) + LV (y, i, t) ≤ (1 + |y|2)θ−2
(

qiθ
[

h+ (h+ hi)|y|2
]

+
[

εqi +
N

∑

j=1

γijqj

]

(1 + 2|y|2) − (q̄i − εqi)|y|4
)

≤ C1,
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where C1 is a positive constant. We therefore derive from (2.8) that

q̂ E[eεt(1 + |y(t)|2)θ] ≤ V (x0, r0) +

∫ t

0

C1e
εsds ≤ V (x0, r0) +

C1

ε
eεt,

where q̂ = mini∈S qi. This implies that

E[(1 + |y(t)|2)θ] ≤ 1

q̂

(

V (x0, r0) +
C1

ε

)

:= C2 ∀t ≥ 0. (2.9)

Now, choose δ > 0 so small for
4(δȟ)θ ≤ 1, (2.10)

where ȟ = max{|h|, |h1|, · · · , |hN |}. Let k = 1, 2, · · · . For t ∈ [kδ, (k + 1)δ], we clearly
have

1 + |y(t)|2 = 1 + |y(kδ)|2 +

∫ t

kδ

2〈y(s), f(y(s), r(s), s)〉ds

By condition (2.2),

1 + |y(t)|2 ≤ 1 + |y(kδ)|2 +

∫ t

kδ

ȟ(1 + |y(s)|2)ds,

Noting that for any a, b ≥ 0

(a+ b)θ ≤ [2(a ∨ b)]θ ≤ 2[aθ ∨ bθ] ≤ 2[aθ + bθ],

and using 2.9, we then have

E

(

sup
kδ≤t≤(k+1)δ

(1 + |y(t)|2)θ
)

≤ 2C2 + 2E

([

∫ (k+1)δ

kδ

ȟ(1 + |y(s)|2)ds
]θ)

≤ 2C2 + 2(δĥ)θ
E

(

sup
kδ≤s≤(k+1)δ

(1 + |y(s)|2)θ
)

. (2.11)

Recalling (2.10), we get

E

(

sup
kδ≤t≤(k+1)δ

(1 + |y(t)|2)θ
)

≤ 4C2,

whence
E

(

sup
kδ≤t≤(k+1)δ

|y(t)|2θ
)

≤ 4C2, ∀k ≥ 1. (2.12)

Let ε̄ > 0 be arbitrary. Then, by the well-known Chebyshev inequality, we have

P

{

sup
kδ≤t≤(k+1)δ

|y(t)|2θ > (kδ)1+ε̄
}

≤ 4C2

(kδ)1+ε̄
, k = 1, 2, · · · .

Applying the well-known Borel–Cantelli lemma (see e.g. [18]), we obtain that for almost
all ω ∈ Ω,

sup
kδ≤t≤(k+1)δ

|y(t)|2θ ≤ (kδ)1+ε̄ (2.13)
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holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for
which (2.13) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and
kδ ≤ t ≤ (k + 1)δ,

log(|y(t)|2θ)

log t
≤ (1 + ε̄) log(kδ)

log(kδ)
= 1 + ε̄.

Therefore

lim sup
t→∞

log(|y(t)|)
log t

≤ 1 + ε̄

2θ
a.s.

Letting ε̄→ 0 we obtain that

lim sup
t→∞

log(|y(t)|)
log t

≤ 1

2θ
a.s.

which is the desired assertion (2.4). The proof is therefore complete. 2

Example 2.2 Let us consider an n-dimensional hybrid differential equation

dy(t)

dt
= zr(t) + Zr(t)y(t), t ≥ 0. (2.14)

Here r(t) is a right-continuous Markov chain on the state space S = {1, 2} with generator

Γ =

(

−γ12 γ12

γ21 −γ21

)

, (γ12 > 0, γ21 > 0)

while z : {1, 2} → R
n and Z : {1, 2} → R

n×n. Assume that

λmax(Z1 + ZT
1 ) < 0, λmax(Z2 + ZT

2 ) > 0,
γ21

λmax(Z2 + ZT
2 )

>
γ12

|λmax(Z1 + ZT
1 )| . (2.15)

Define
f(x, i, t) = zi + Zix, (x, i, t) ∈ R

n × S × R+.

Then equation (2.14) becomes (2.1). Compute, for any θ ∈ (0, 1),

2〈x, f(x, i, t)〉 = 2〈x, zi〉 + 〈x, (Zi + ZT
i )x〉

≤ 2|zi||x| + λmax(Zi + ZT
i )|x|2

≤ |zi|2
θ

+
(

λmax(Zi + ZT
i ) + θ

)

|x|2.

In other words, condition (2.2) is satisfied with

hi = λmax(Zi + ZT
i ) + θ, i ∈ S.

The matrix defined by (2.3) becomes
(

θ(|λmax(Z1 + ZT
1 )| − θ) + λ12 λ12

λ21 −θ(λmax(Z2 + ZT
2 ) + θ) + λ21

)

. (2.16)

Clearly we can choose θ sufficiently small for

θ(|λmax(Z1 + ZT
1 )| − θ) + λ12 > 0 and − θ(λmax(Z2 + ZT

2 ) + θ) + λ21 > 0.
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Hence, matrix (2.16) is a non-singular M-matrix if and only if

[

θ(|λmax(Z1 + ZT
1 )| − θ) + λ12

][

− θ(λmax(Z2 + ZT
2 ) + θ) + λ21

]

− λ12λ21 > 0,

namely

ψ(θ) := −θ(|λmax(Z1 + ZT
1 )| − θ)(λmax(Z2 + ZT

2 ) + θ)

+λ21(|λmax(Z1 + ZT
1 )| − θ) − λ12(λmax(Z2 + ZT

2 ) + θ) > 0. (2.17)

Clearly, ψ(θ) is a continuous function on θ ∈ [0, 1) and, by condition (2.15),

ψ(0) = λ21|λmax(Z1 + ZT
1 )| − λ12λmax(Z2 + ZT

2 ) > 0.

Hence, we can further, if necessary, choose θ sufficiently small for ψ(θ) > 0. In other
words, condition (2.15) guarantees that there is a θ ∈ (0, 1) for matrix (2.16) to be a
non-singular M-matrix. By Theorem 2.1, we can therefore conclude that for any initial
value y(0) ∈ R

n, the solution of equation (2.14) will obey

lim sup
t→∞

log(|y(t)|)
log t

≤ 1

2θ
a.s. (2.18)

In other words, under condition (2.15), the solution of equation (2.14) will grow at most
polynomially with probability one.

Let us return to equation (1.1). Recall that γ12 = 1, γ21 = 3 and compute

λmax(Z1 + ZT
1 ) = −2 λmax(Z2 + ZT

2 ) = 2.

Hence condition (2.15) is satisfied by equation (1.1). We therefore know that the solution
of equation (1.1) will grow at most polynomially with probability one. To be more preciese,
we observe that matrix (2.16) becomes

(

θ(2 − θ) + 1 1
3 −θ(2 + θ) + 3

)

.

Clearly, θ(2− θ) + 1 > 0 and −θ(2 + θ) + 3 > 0 when θ ∈ (0, 1). So, for the matrix above
to be a non-singular M-matrix, all we need is a θ ∈ (0, 1) for

[θ(2 − θ) + 1][−θ(2 + θ) + 3] − 3 > 0,

namely
θ3 − 8θ + 4 > 0.

It is easy to see that this holds whenever 0 < θ < 0.5173, whence (2.18) holds. We can
then conclude that the solution of equqtion (1.1) obeys

lim sup
t→∞

log(|y(t)|)
log t

≤ 1

2 × 0.5173
= 0.9666 a.s.
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3 Exponential Growth of SDEs

Let us now stochastically perturb the differential equation (2.1) into a stochastic differ-
ential equation (SDE)

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (3.1)

on t ≥ 0 with the initial data x(0) = x0 ∈ R
n and r(0) = r0 ∈ S, where

f : R
n × S × R+ → R

n and g : R
n × S × R+ → R

n×m.

Our aim here is to show how the stochastic perturbation will force the solution to grow
exponentially, in constrast to the fact that the solution of the corresponding differential
equation (2.1) will only grow at most polynomially.

Again, as a standing hypothesis in this paper, we assume that the coefficients f and g
are sufficiently smooth so that the SDE (3.1) has a unique global solution x(t) on t ∈ R+.
For example, a known condition for this is that both coefficients f and g are locally
Lipschitz continuous and obey the linear growth condition (see e.g. [20]).

In particular, under the linear growth condition: there is a positive constant H such
that

|f(x, i, t)|2 ∨ |g(x, i, t)|2 ≤ H(1 + |x|2), ∀(x, i, t) ∈ R
n × S × R+,

then the solution obeys

lim sup
t→∞

1

t
log(|x(t)|) ≤

√
H +

H

2
a.s.

(see e.g. [20, Theorem 3.17 on page 93]). That is, the solution will grow at most ex-
ponentially with probability one. However, there is so far no result on the lower bound
for

lim inf
t→∞

1

t
log(|x(t)|).

In this section, we will establish some sufficient conditions under which we have

lim inf
t→∞

1

t
log(|x(t)|) > 0 a.s.

that is, the solution will grow exponentially with probability one.

Theorem 3.1 Assume that for each i ∈ S, there are constants c1i–c6i such that

−c1i − c2i|x|2 ≤ 2〈x, f(x, i, t)〉, |xTg(x, i, t)|2 ≤ c3i|x|2 + c4i|x|4 (3.2)

and
|g(x, i, t)|2 ≥ c5i + c6i|x|2 (3.3)

for all (x, t) ∈ R
n × R+. Set

αi = c5i − c1i, βi = c5i + c6i − c1i − c2i − 2c3i, γi = c6i − c2i − 2c4i, (3.4)
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and define

δi =

{

αi ∧ γi if βi ≥ 2(αi ∧ γi);

min
{

αi, γi,
αiγi−0.25β2

i

αi+γi−βi

}

otherwise.
(3.5)

If

δ̄ :=
∑

i∈S

πiδi > 0, (3.6)

then the solution of equation (3.1) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ δ̄

2
a.s. (3.7)

To prove this theorem, let us present a lemma.

Lemma 3.2 Let α, β and γ be three real numbers and define δ = α ∧ γ if β ≥ 2(α ∧ γ)
or otherwise

δ = min
{

α, γ,
αγ − 0.25β2

α+ γ − β

}

.

Then
α+ βu+ γu2 ≥ δ(1 + u)2, ∀u ≥ 0. (3.8)

Proof. If β ≥ 2(α ∧ γ), then, for u ≥ 0,

α+ βu+ γu2 ≥ δ + 2δu+ δu2 = δ(1 + u)2,

which is (3.8). Let us now consider the case when β < 2(α ∧ γ). Write, for u ≥ 0,

α+ βu+ γu2 − δ(1 + u)2 = α− δ + (β − 2δ)u+ (γ − δ)u2

= (1, u)

(

α− δ 0.5β − δ
0.5β − δ γ − δ

) (

1
u

)

.

By the definition of δ, we know α − δ ≥ 0 and γ − δ ≥ 0. It is therefore clear that (3.8)
will hold if

(α− δ)(γ − δ) ≥ (0.5β − δ)2,

namely
(α+ γ − β)δ ≤ αγ − 0.25β2.

But, given that β < 2(α ∧ γ), we must have β < α + γ. Hence, the inequality above is
equivalent to

δ ≤ αγ − 0.25β2

α+ γ − β
,

which is guaranteed by the definition of δ. In other words, we have showed that the
assertion (3.8) holds as well when β < 2(α ∧ γ). 2

We can now prove Theorem 3.1.

Proof. By the Itô formula we compute

d[log(1 + |x(t)|2)] = G(x(t), r(t), t)dt+
2xT (t)g(x(t), r(t), t)

1 + |x(t)|2 dB(t), (3.9)
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where G : R
n × S × R+ → R is defined by

G(x, i, t) =
2〈x, f(x, i, t)〉 + |g(x, i, t)|2

1 + |x|2 − 2|xTg(x, i, t)|2
(1 + |x|2)2

. (3.10)

By conditions (3.2) and (3.3),

G(x, i, t) ≥ (c5i − c1i) + (c6i − c2i)|x(t)|2
1 + |x|2 − 2c3i|x(t)|2 + 2c4i|x(t)|4

(1 + |x|2)2

=
F (|x|2, i)

(1 + |x(t)|2)2
, (3.11)

where F : R+ × S → R is defined by

F (u, i) = αi + βiu+ γiu
2,

in which the parameters αi, βi and γi have been defined by (3.4). By Lemma 3.2,

F (u, i) ≥ δi(1 + u)2, ∀u ≥ 0,

where δi is defined by (3.5). We therefore obtain from (3.9) that

d[log(1 + |x(t)|2)] ≥ δr(t)dt+
2xT (t)g(x(t), r(t), t)

1 + |x(t)|2 dB(t),

whence

log(1 + |x(t)|2) ≥ log(1 + |x0|2) +

∫ t

0

δr(s)ds+M(t), (3.12)

where

M(t) =

∫ t

0

2xT (s)g(x(s), r(s), s)

1 + |x(s)|2 dB(s),

which is a continuous martingale with initial value M(0) = 0. By condition (3.2), we
compute its quadratic variation

〈M(t)〉 =

∫ t

0

4|xT (s)g(x(s), r(s), s)|
1 + |x(s)|2 dt ≤

∫ t

0

4(č3|x(s)|2 + č4|x(s)|4)
1 + |x(s)|2 dt ≤ 4(č3 + č4)t,

where č3 = maxi∈S c3i and č4 = maxi∈S c4i. Hence, by the strong law of large numbers of
martingales (see e.g. [18, Theorem 3.4 on page 12]),

lim
t→∞

M(t)

t
= 0 a.s. (3.13)

Moreover, by the well-known ergodic theory of the Markov chain,

lim
t→∞

1

t

∫ t

0

δr(s)ds =
∑

i∈S

πiδi = δ̄ a.s.

Dividing both sides of (3.12) and then letting t→ ∞ we then obtain

lim inf
t→∞

1

t
log(1 + |x(t)|2) ≥ δ̄ a.s. (3.14)
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Hence, for any ε ∈ (0, δ̄), there exists a random number T = T (ω) > 0 such that, for
almost all ω ∈ Ω,

1

t
log(1 + |x(t, ω)|2) ≥ δ̄ − ε, t ≥ T (ω).

That is,
|x(t, ω)|2 ≥ e(δ̄−ε)t − 1, t ≥ T (ω).

This implies

lim inf
t→∞

1

t
log(|x(t, ω)|) ≥ δ̄ − ε

2
.

As ε > 0 is arbitrary, we must have

lim inf
t→∞

1

t
log(|x(t, ω)|) ≥ δ̄

2

for almost all ω ∈ Ω as required. 2

Let us make some comments on the conditions of Theorem 3.1. We observe that
condition (3.2) can be satisfied by a large class of functions. For example, if both f and
g obey the linear growth condition

|f(x, i, t)|2 ∨ |g(x, i, t)|2 ≤ H(1 + |x|2),

then
−2〈x, f(x, i, t)〉 ≤ 2|x||f(x, i, t)| ≤ 2

√
H(|x| + |x|2) ≤

√
H(1 + |x|2)

and
|xTg(x, i, t)|2 ≤ |x|2|g(x, i, t)|2 ≤ H(|x|2 + |x|4),

that is f and g obey (3.2). However, instead of using the linear growth condition, the
forms described in (3.2) enable us to compute the parameters c1i–c4i more precisely in
many situations as illustrated in the examples discussed in the next sections. In the
following sections we will show clearly that condition (3.3) associated with noise is very
critical in order to have an exponential growth.

Example 3.3 Let us consider the SDE (1.3). Given (1.2), it is easy to obtain the sta-
tionary distribution of the Markov chain on the state space S = {1, 2} is π = (π1, π2) =
(3/4, 1/4). For (x, i, t) ∈ R

2 × S × R+, define

f(x, i, t) = zi + Zix, g(x, 1, t) = 0, g(x, 2, t) =

(

ξ21 σ2x2

ξ22 −σ2x1

)

.

Then equation (1.3) becomes (3.1). It is easy to show

−2 − 5|x|2 ≤ 2〈x, f(x, 1, t)〉, −2 − (−|x|2) ≤ 2〈x, f(x, 2, t)〉,

|xTg(x, 1, t)|2 = 0, |xTg(x, 2, t)|2 ≤ |ξ2|2|x|2,
|g(x, 1, t)|2 = 0, |g(x, 2, t)|2 ≥ |ξ2|2 + σ2

2|x|2.
That is, (3.2) and (3.3) hold with

c11 = 2, c21 = 5, c31 = c41 = c51 = c61 = 0,
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c12 = 2, c22 = −1, c32 = |ξ2|2, c42 = 0, c52 = |ξ2|2, c62 = σ2
2.

Hence, the parameters defined by (3.4) are

α1 = −2, β1 = −7, γ1 = −5, α2 = |ξ2|2 − 2, β2 = σ2
2 − |ξ2|2 − 1, γ2 = σ2

2 + 1.

By (3.5), we get δ1 = −5. Now choose ξ2 for |ξ2|2 > 2 and choose σ2 = |ξ2|2 + 1. Then,
by (3.5), we get

δ2 =
|ξ2|4 − 4

2|ξ2|2
.

Choose ξ2 > 15 +
√

229 for

δ̄ = −15

4
+

|ξ2|4 − 4

8|ξ2|2
> 0.

Then, by Theorem 3.1, the solution of the SDE (1.3) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥ δ̄

2
a.s.

For instance, let ξ2 = (6, 0)T and σ2
2 = 37. Then

lim inf
t→∞

1

t
log(|x(t)|) ≥ 0.736 a.s.

4 Noise Expresses Exponential Growth

In the above sections, we have discussed the polynomial growth of the differential equation
(2.1) and the exponential growth of the corresponding SDE (3.1). The question is: Given
equation (2.1) can we design the diffusion coefficient g so that the solution of the SDE
(3.1) will grow exponentially with probability one? Example 3.3 discussed in the above
section shows the possibility. In this section we will develop the idea there into a general
theory. We will assume, implicitly, that the conditions of Theorem 2.1 hold. In this way,
we show clearly that it is noise that expresses exponential growth.

In order to make use of Theorem 3.1, we naturally impose the following condition

−c1i − c2i|x|2 ≤ 〈x, f(x, i, t)〉, (x, i, t) ∈ R
n × S × R+, (4.1)

where c1i and c2i are non-negative constants. This condition gives a lower bound for
〈x, f(x, i, t)〉 while (2.2) gives an upper bound.

We will design g to be independent of t so we will write g(x, i, t) as g(x, i) in this
section. Moreover, we shall see that the noise term g(x(t), r(t))dB(t) can be designed to
be a linear form of x(t).

4.1 Even dimension of the state space

First, let the dimension of the state space n be an even number and choose the dimension
of the Brownian motion m to be 2. Design g : R

n × S → R
n×2 by

g(x, i) = (ξi, Aix),
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where ξi = (ξi1, · · · , ξin)T ∈ R
n and

Ai =















0 σi

−σi 0
. . .

0 σi

−σi 0















with σi ∈ R. So the stochastically perturbed system (3.1) becomes

dx(t) = f(x(t), r(t), t)dt+ ξr(t)dB1(t) + σr(t)















x2(t)
−x1(t)

...
xn(t)

−xn−1(t)















dB2(t). (4.2)

For (x, i) ∈ R
n × S, compute

|xTg(x, i)|2 = (xT ξi)
2 + (xTAix)

2 = (xT ξi)
2 ≤ |ξi|2|x|2

and
|g(x, i)|2 = |ξi|2 + |Aix|2 = |ξi|2 + σ2

i |x|2.
That is, conditions (3.2) and (3.3) are satisfied with

c3i = |ξi|2, c4i = 0, c5i = |ξi|2, c6i = σ2
i . (4.3)

Consequently, the parameters defined by (3.4) becomes

αi = |ξi|2 − c1i, βi = σ2
i − c1i − c2i − |ξi|2, γi = σ2

i − c2i.

There are various ways to choose ξi and σi for the solution of equation (4.2) to grow
exponentially with probability one. Let us discuss a number of cases.

Case 4.1.1. For each i ∈ S, choose

|ξi|2 > c1i and σ2
i = c1i + c2i + |ξi|2 (4.4)

Then βi = 0 and γi = |ξi|2 + c1i ≥ αi, and

αiγi − 0.25β2
i

αi + γi − βi

=
|ξi|4 − c21i

2|ξi|2
≤ αi(|ξi|2 + c1i)

2|ξi|2
< αi.

whence, the δi defined by (3.5) becomes

δi =
|ξi|4 − c21i

2|ξi|2
> 0.

By Theorem 3.1, the solution of equation (4.2) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥

∑

i∈S

πi(|ξi|2 − c21i)

4|ξ|2 > 0. a.s. (4.5)
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Case 4.1.2. For each i ∈ S, choose

|ξi|2 > c1i and σ2
i = 3|ξi|2 + c2i − c1i. (4.6)

Then γi = 3|ξi|2 − c1i = 2|ξi|2 + αi > αi, βi = 2αi, so the δi defined by (3.5) becomes

δi = αi = |ξi|2 − c1i > 0.

By Theorem 3.1, the solution of equation (4.2) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥

∑

i∈S

πi

2
(|ξi|2 − c1i) > 0 a.s. (4.7)

Case 4.1.3. Divide S into two parts, namely S = S1 ∪ S2. Choose ξi and σi by (4.4)
for each i ∈ S1 while by (4.6) for each i ∈ S2. It is then easy to see that the solution of
equation (4.2) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥

∑

i∈S1

πi(|ξi|2 − c21i)

4|ξi|2
+

∑

i∈S2

πi

2
(|ξi|2 − c1i) > 0 a.s. (4.8)

Case 4.1.4. Again divide S into two parts, namely S = S1 ∪ S2, but assume that the
system is not obserable or cannot be perturbed stochastically in any regime i ∈ S1. In
other words, we have to set ξi = 0 and σi = 0 for every i ∈ S1 but we can choose ξi and
σi for i ∈ S2. Accordingly, for each i ∈ S1,

c3i = c4i = c5i = c6i = 0, αi = −c1i, βi = −c1i − c2i, γi = −c2i.

Clearly, βi = −c1i − c2i ≥ 2((−c1i) ∧ (−c2i)) = 2(αi ∧ γi) so, by (3.5),

δi = (−c1i) ∧ (−c2i).

On the other hand, for each i ∈ S2, choose ξi and σi by (4.6), and, in addition, choose ξi
sufficiently large for

∑

i∈S1

πi[(−c1i) ∧ (−c2i)] +
∑

i∈S2

πi

2
(|ξi|2 − c1i) > 0.

Then, by Theorem 3.1, the solution of equation (4.2) obeys

lim inf
t→∞

1

t
log(|x(t)|) ≥

∑

i∈S1

πi[(−c1i) ∧ (−c2i)] +
∑

i∈S2

πi

2
(|ξi|2 − c1i) > 0 a.s. (4.9)

4.2 Odd dimension of the state space

We next let the dimension of the state space n be an odd number but n ≥ 3. Choose the
dimension of the Brownian motion m to be 3 and design g : R

n × S → R
n×3 by

g(x, i) = (ξi, Fix,Gix),
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where ξ ∈ R
n while

Fi =



















0 σi

−σi 0
. . .

0 σi

−σi 0
0



















and Gi =



















0
0 σi

−σi 0
. . .

0 σi

−σi 0



















with σi ≥ 0. So the stochastically perturbed system (3.1) becomes

dx(t) = f(x(t), r(t), t)dt+ ξr(t)dB1 + σr(t)



















x2(t)
−x1(t)

...
xn−1(t)
−xn−2(t)

0



















dB2(t) + σr(t)



















0
x2(t)
−x3(t)

...
xn(t)

−xn−1(t)



















dB3(t).

(4.10)
For (x, i) ∈ R

n × S, compute

|xTg(x, i))|2 = (xT ξi)
2 + (xTFix)

2 + (xTGix)
2 = (xT ξi)

2 ≤ |ξi|2|x|2

and
|g(x, i))|2 = |ξi|2 + |Fix|2 + |Gix|2 ≥ |ξi|2 + σ2

i |x|2.
Hence, conditions (3.2) and (3.3) are satisfied with the same parameters specified by (4.3).
Hence, the conclusions obtained in Cases 4.1.1-4 apply to the perturbed SDE (4.10).

Summarizing the above arguments, we obtain the following result.

Theorem 4.1 Any nonlinear hybrid differential equation ẏ(t) = f(y(t), r(t), t) can be
stochastically perturbed by Brownian motions into the hybrid SDE (3.1) whose solutions
will grow exponentially with probability one provided (4.1) is satisfied and the dimension of
the state space is greater than 1. The result still holds even in the case where stochastic per-
turbation is only allowed in some regimes. Moreover, the noise term g(x(t), r(t), t)dB(t)
in (3.1) can be designed to be a linear form of x(t).

4.3 Scalar case

The theorem above requires the dimension of the state space be greater than 1. Naturally,
we may wonder what happens in the scalar case? More precisely, the question is: Given
a scalar swithcing differential equation ẏ(t) = f(y(t), r(t), t) whose solutions grow at most
polynomially, can we stochastically perturb it into a hybrid SDE whose solutions will grow
exponentially with probability one?

To answer this question, let us consider a linear hybrid differential equation

ẏ(t) = p(r(t)) − q(r(t))y(t), t ≥ 0. (4.11)
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Assume that p(i) and q(i) (i ∈ S) are all positive numbers. It can be showed by Theorem
2.1 that the solution of equation (4.11) will grow at most polynomially with probability
one. Let us now stochastically perturb this equation into a

dx(t) = (p(r(t)) − q(r(t))x(t))dt+
m

∑

k=1

(uk(r(t)) + vk(r(t))x(t))dBk(t), (4.12)

where uk(i) and vk(i) are all real numbers. We will show in elsewhere, due to the page
limit here, that for any given uk(i) and vk(i), the solution of this SDE will still grow at
most polynomially with probability one. In other words, the linear stochastic perturbation
∑m

k=1(uk(r(t)) + vk(r(t))x(t))dBk(t) may not force the solution of a scalar system ẏ(t) =
f(y(t), r(t), t) to grow exponentially.

5 Linear Systems

Let us consider an n-dimensional linear hybrid differential equation

dy(t)

dt
= u(r(t)) + U(r(t))y(t), t ≥ 0, (5.1)

where u : S → R
n and U : S → R

n×n, and we will write u(i) = ui and U(i) = Ui. This is
a special case of eqution (2.1) where

f(y, i, t) = ui + Uiy, (y, i, t) ∈ R
n × S × R+.

Compute

|〈y, f(y, i, t)|〉 ≤ |yTui| + |yTUiy| ≤ |ui||y| + ‖Ui‖|y|2 ≤ 0.5|ui| + (0.5|ui| + ‖Ui‖)|y|2,

whence

−0.5|ui| − (0.5|ui| + ‖Ui‖)|y|2 ≤ 〈y, f(y, i, t)〉 ≤ 0.5|ui| + (0.5|ui| + ‖Ui‖)|y|2.

In ohter words, condition (4.1) holds with c1i = 0.5|ui| and c2i = 0.5|ui| + ‖Ui‖.
Now, divide S into two parts, namely S = S1 ∪ S2. Assume that the system is not

observable or cannot be perturbed stochastically in any regime i ∈ S1 but observable or
can be perturbed stochastically in every regime i ∈ S2.

Case 5.1 Even dimension

When the dimension of the state space is even, we can stochastically perturb system
(5.1) into

dx(t) = [u(r(t)) + U(r(t))x(t)]dt+ ξr(t)dB1(t) + σr(t)















x2(t)
−x1(t)

...
xn(t)

−xn−1(t)















dB2(t), (5.2)
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where ξi = 0 and σi = 0 for i ∈ S1, while ξi ∈ R
n and σi ∈ R for i ∈ S2. Based on the

result in Case 4.1.4, if we choose ξi and σi (i ∈ S2) such that

|ξi|2 > 0.5|ui|, σ2
i = 3|ξi|2 + ‖Ui‖

and
∑

i∈S2

πi

2
(|ξi|2 − 0.5|ui|) >

∑

i∈S1

πi(0.5|ui| + ‖Ui‖),

then the solutions of the stochastically perturbed system (5.2) will grow exponentially
with probability one.

Case 5.2 Odd dimension

When the dimension of the state space is odd and greater than 2, we can stochastically
perturb system (5.1) into

dx(t) = [u(r(t)) + U(r(t))x(t)]dt+ ξr(t)dB1

+ σr(t)



















x2(t)
−x1(t)

...
xn−1(t)
−xn−2(t)

0



















dB2(t) + σr(t)



















0
x2(t)
−x3(t)

...
xn(t)

−xn−1(t)



















dB3(t), (5.3)

where ξi and σi are chosen in the same way as in Case 5.1. Then, based on the re-
sult in Section 4.2, the solutions of the stochastically perturbed system (5.3) will grow
exponentially with probability one.

6 Conclusions

In this paper, we consider a system described by a differential equation under regime
switching, whose solution may grow at most polynomially. We suppose that the system
is subject to environmental noise in some regimes, or we can stochastically perturb the
system in some regimes. We then show that the regime switching and the environmental
noise will make the original system whose solution grows at most polynomially become a
new system whose solutions will grow exponentially. In other words, we reveal that the
regime switching and the environmental noise will express the exponential growth.

However, everything has two sides. To close our paper we would like to point out that
the regime switching and the environmental noise may also suppress exponential growth.
But, due to the page limit here, we will report these results elsewhere.
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