Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Dynamic response of severe plastic deformation processed 1070 aluminum at various temperatures

Kuokkala, V.T and Kokkonen, J. and Song, B. and Chen, W. and Olejnik, L. and Rosochowski, A. (2008) Dynamic response of severe plastic deformation processed 1070 aluminum at various temperatures. In: Proceedings of the 18th DYMAT Technical Meeting, The Behaviour of Bulk Nanomaterials and Metallic Glasses under Dynamic Loading. Nexter Munitions, La Chapelle, France. ISBN 2-9517947-3-8

Full text not available in this repository. Request a copy from the Strathclyde author


The properties of materials are directly related to their microstructure, one quantitative measure of which is the average grain size. Most of the strength properties of crystalline materials are improved with diminishing grain size, and therefore new technologies have been developed to produce also bulk metals with nanocrystalline or ultrafine grain sizes. In this paper, we report the results of compression experiments on ultrafine-grained 1070 aluminum produced by different routes of equal-channel angular pressing (ECAP). The compression tests were conducted at different strain rates and temperatures using a servo-hydraulic materials testing machine and the Split Hopkinson Pressure bar technique. The results show that both increasing strain rate and decreasing temperature increase the work hardening capability of ultrafine-grained aluminum, thus enhancing the ductility of the material. The strain rate dependence of ultrafine-grained aluminum is also higher than that of the coarse-grained material, which implies that there are also differences in the active deformation mechanisms of these two different types of materials.