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Abstract

This paper is concerned with the exponential mean-square stabilisation of hybrid
stochastic differential equations (also known as stochastic differential equations with
Markovian switching) by delay feedback controls. Although the stabilisation by non-
delay feedback controls for such equations has been discussed by several authors,
there is so far little on the stabilisation by delay feedback controls and our aim
here is mainly to close the gap. To make our theory more understandable as well
as to avoid complicated notations, we will restrict our underlying hybrid stochastic
differential equations to a relatively simple form. However our theory can certainly
be developed to cope with much more general equations without any difficulty.
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1 Introduction

The hybrid systems driven by continuous-time Markov chains have been used to model
many practical systems where they may experience abrupt changes in their structure and
parameters. The hybrid systems combine a part of the state that takes values continuously
and another part of the state that takes discrete values. An important class of hybrid
systems is the hybrid stochastic differential equation (SDE),

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t), (1.1)

where a part of the state x(t) takes values in Rn while another part of the state r(t)
is a Markov chain taking values in a finite space S = {1, 2, · · · , N}. Such an SDE is
also known as the SDE with Markovian switching. One of the important issues in the
study of hybrid SDEs is the automatic control, with subsequent emphasis being placed
on the analysis of stability. There is an intensive literature in this area, for example,
[1, 8, 14, 15, 16, 18, 19, 20, 22, 25, 26, 27, 28], a few to name. In particular, we refer the
reader to the recent book [21].
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This paper is concerned with the exponential mean-square stabilisation of hybrid
stochastic differential equations (also known as stochastic differential equations with
Markovian switching) by delay feedback controls. The stabilisation by non-delay feed-
back controls for such equations has been discussed by several authors e.g. [20]. Here,
given an unstable hybrid SDE in the form of (1.1), it is required to find a feedback control
u(x(t), r(t)), based on the current state, so that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(t), r(t))]dt+ g(x(t), r(t), t)dw(t) (1.2)

becomes stable. (It is possible to put the feedback control in the diffusion part but, in
this paper, we will only consider the case where the control is put into the drift part.)
However, it is more realistic in practice if the control depends on a past state, say x(t−τ),
due to a time lag τ (> 0) between the time when the observation of the state is made and
the time when the feedback control reaches the system. Accordingly, the control should
be of the form u(x(t − τ), r(t)). Hence, the stabilisation problem becomes to design a
delay feedback control u(x(t− τ), r(t)) in the drift part so that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(t− τ), r(t))]dt+ g(x(t), r(t), t)dw(t) (1.3)

becomes stable. There is so far little on this stabilisation problem by delay feedback
controls and our aim here is mainly to close the gap.

Of course, one may consider to design a feedback control u(x(t), x(t− τ), r(t)), based
on both current and past state, so that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(t), x(t− τ), r(t))]dt+ g(x(t), r(t), t)dw(t) (1.4)

becomes stable. However, this is clearly easier than either (1.2) or (1.3) because (1.4) is
possible if either (1.2) or (1.3) is possible.

To make our theory more understandable as well as to avoid complicated notations,
we will restrict our underlying hybrid systems to a relatively simple form. However our
theory can certainly be developed to cope with much more general equations without any
difficulty. For example, the underlying system would be an unstable hybrid stochastic
differential delay equation

dx(t) = f(x(t), x(t− δ), r(t), t)dt+ g(x(t), x(t− δ), r(t), t)dw(t), (1.5)

and we could show that it is possible to design a delay feedback control u(x(t− τ), r(t))
in the drift part so that the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) +u(x(t− τ), r(t))]dt+ g(x(t), x(t− δ), r(t), t)dw(t) (1.6)

becomes stable.

2 Notation and Stabilisation Problem

Throughout this paper, unless otherwise specified, we let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right
continuous and F0 contains all P -null sets). Let w(t) be a scalar Brownian motion defined
on the probability space. If A is a vector or matrix, its transpose is denoted by AT . If A

2



is a matrix, its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}, where | · | is the
Euclidean norm.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while

γii = −
∑
j 6=i

γij.

We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It
is known that almost all sample paths of r(t) are constant except for a finite number of
simple jumps in any finite subinterval of R+ (:= [0,∞)). We stress that almost all sample
paths of r(t) are right continuous.

Consider an n-dimensional linear hybrid SDE

dx(t) = A(r(t))x(t)dt+B(r(t))x(t)dw(t) (2.1)

on t ≥ 0. Here A, B : S → Rn×n and we will often write A(i) = Ai and B(i) = Bi.
Suppose that this given equation is unstable and we are required to design a feedback
control u(x(t), r(t)) in the drift part so that the controlled SDE

dx(t) = [A(r(t))x(t) + u(x(t), r(t))]dt+B(r(t))x(t)dw(t)

will be mean-square exponentially stable, where u is a mapping from Rn × S to Rn.
We here note that the feedback control u(x(t), r(t)) depends on the current state x(t).
However, it is more realistic in practice if the control depends on a past state, say x(t−τ),
due to a time lag τ (> 0) between the time when the observation of the state is made and
the time when the feedback control reaches the system. Accordingly, the control should
be of the form u(x(t − τ), r(t)). The stabilisation problem hence becomes to design a
delay feedback control u(x(t− τ), r(t)) in the drift part so that the controlled system

dx(t) = [A(r(t))x(t) + u(x(t− τ), r(t))]dt+B(r(t))x(t)dw(t) (2.2)

will be mean-square exponentially stable. As the given SDE (2.1) is linear, it is natural
to use a linear feedback control. One of the most common linear feedback controls is the
structure control of the form u(x, i) = F (i)G(i)x, where F and G are mappings from
S to Rn×l and Rl×n, respectively, and one of them is given while the other needs to be
designed. These two cases are known as:

• State feedback: design F (·) when G(·) is given;

• Output injection: design G(·) when F (·) is given.

Again, we will often write F (i) = Fi and G(i) = Gi. As a result, the controlled system
(2.2) becomes

dx(t) = [A(r(t))x(t) + F (r(t))G(r(t))x(t− τ)]dt+B(r(t))x(t)dw(t). (2.3)
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This controlled system is a hybrid stochastic differential delay equation (SDDE). For an
SDDE, it is required to know some initial data, for example, x(t) on t ∈ [−τ, 0] in order
for its solution to be well defined. Given that our underlying equation (2.1) is non-delay
and it only requires the initial value x(0) ∈ Rn, it is more natural to assume that for
our controlled system (2.3) we know the initial data x(t) on t ∈ [0, τ ]. This can be
interpreted as follows: Let the underlying equation (2.1) evolve from time 0 to τ and
observe the whole segment {x(t) : 0 ≤ t ≤ τ}. Starting from τ on, design the feedback
control F (r(t))G(r(t))x(t− τ) based on the past observation {x(t) : 0 ≤ t ≤ τ} as well as
furthermore observation as time evolves. In other words, we shall regard the controlled
system (2.3) as an SDDE on t ≥ τ with the initial data {x(t) : 0 ≤ t ≤ τ} which are
generated by the SDE (2.1) given the initial value x(0) ∈ Rn. By the theory of hybrid
SDEs (see e.g. [14]), we know

E|x(t)|2 <∞ on t ∈ [0, τ ],

which in turn implies, by the theory of hybrid SDDEs (see e.g. [21]), that

E|x(t)|2 <∞ for t ≥ τ.

Our aim is to design either G(·) given F (·) or F (·) given G(·) so that E|x(t)|2 will tend
to zero exponentially. We shall discuss the former case in the next section while leave the
later case to Section 4.

3 State Feedback: Design F (·) when G(·) is given

One technique used frequently in the study of stability of SDDEs is the method of linear
matrix inequalities (LMIs) (see e.g. [4, 5, 7, 24, 29, 30, 31, 32]), although there are other
methods (see e.g. the recent survey paper [17]). The principal procedure of the LMI
method is: (i) Design a positive-definite quadratic Lyapunov function or functional V .
(ii) Apply the Itô formula to compute the Itô differential dV . (iii) Arrange the drift
part of dV in the form of LMIs. For our stabilisation purpose related to the controlled
SDDE (2.3) we shall use a positive-definite quadratic Lyapunov functional on the segment
x̂t := {x(t + s) : −2τ ≤ s ≤ 0} for t ≥ 2τ . More precisely, the Lyapunov functional used
in this paper will be of the form

V (x̂t, r(t), t) = xT (t)Q(r(t))x(t) +

∫ t

t−τ

∫ t

s

[
α1|x(u)|2 + α2|x(u− τ)|2

]
duds (3.1)

for t ≥ 2τ . Here α1 and α2 are two positive numbers while Q is defined on S and takes its
values of symmetric positive-definite n×n-matrices. Of course, we shall write Q(i) = Qi.
Accordingly we shall regard the controlled system (2.3) as an SDDE on t ≥ 2τ with initial
data {x(s) : 0 ≤ s ≤ 2τ}. Applying the Itô formula (see e.g. [16, 21]) to the Lyapunov
functional defined by (3.1) yields

dV (x̂t, r(t), t) = LV (x̂t, r(t), t)dt+ 2xT (t)Q(r(t))B(r(t))x(t)dw(t), (3.2)
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for t ≥ 2τ , where, when r(t) = i,

LV (x̂t, i, t) = 2xT (t)Qi[Aix(t) + FiGix(t− τ)]

+ xT (t)BiQiBix(t) +
N∑
j=1

γijx
T (t)Qjx(t)

+ α1τ |x(t)|2 − α1

∫ t

t−τ
|x(s)|2ds

+ α2τ |x(t− τ)|2 − α2

∫ t

t−τ
|x(s− τ)|2ds. (3.3)

To see why (3.2) holds, we regard the solution x(t) of equation (2.3) as an Itô process and
apply the Itô formula (see e.g. [16, 21]) to xT (t)Q(r(t))x(t) to get

d[xT (t)Q(r(t))x(t)] =
(

2xT (t)Q(r(t))[A(r(t))x(t) + F (r(t))G(r(t))x(t− τ)]

+xT (t)B(r(t))Q(r(t))B(r(t))x(t) +
N∑
j=1

γr(t),jx
T (t)Qjx(t)

)
dt

+ 2xT (t)Q(r(t))B(r(t))x(t)dw(t).

On the other hand, the fundamental theory of calculus shows

d
(∫ t

t−τ

∫ t

s

[
α1|x(u)|2 + α2|x(u− τ)|2

]
duds

)
=

(
α1τ |x(t)|2 − α1

∫ t

t−τ
|x(s)|2ds+ α2τ |x(t− τ)|2 − α2

∫ t

t−τ
|x(s− τ)|2ds

)
dt.

Combining these two equalities gives (3.2). Let us now present a useful lemma.

Lemma 3.1 If there are numbers λ1 > λ2 ≥ 0 and λ3 > 0 such that

E(LV (x̂t, r(t), t)) ≤ −λ1E|x(t)|2 + λ2E|x(t− τ)|2 − λ3E
∫ t

t−2τ

|x(s)|2ds (3.4)

for all t ≥ 2τ , then

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −γ, (3.5)

where γ > 0 obeys

γ ≤ λ3

τ(α1 ∨ α2)
and λ1 ≥ λ2e

γτ + γq̌,

in which q̌ = maxi∈S ‖Qi‖.

Proof. By the Itô formula (see e.g. [16, 21]), we have

eγtEV (x̂t, r(t), t) = C +

∫ t

2τ

eγs
[
γEV (x̂s, r(s), s) + E(LV (x̂s, r(s), s))

]
ds, (3.6)
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where C = e2γτEV (x̂2τ , r(2τ), 2τ). We compute

EV (x̂t, r(t), t) ≤ q̌E|x(t)|2 +

∫ t

t−τ

∫ t

s

[
α1E|x(u)|2 + α2E|x(u− τ)|2

]
duds

≤ q̌E|x(t)|2 +

∫ t

t−τ

[
α1τE|x(u)|2 + α2τE|x(u− τ)|2

]
du

≤ q̌E|x(t)|2 + τ(α1 ∨ α2)

∫ t

t−2τ

E|x(u)|2du.

Substituting this and (3.4) into (3.6) and noting that λ3 ≥ τγ(α1 ∨ α2), we get

eγtEV (x̂t, r(t), t) ≤ C +

∫ t

2τ

eγs
[
(−λ1 + γq̌)E|x(s)|2 + λ2E|x(s− τ)|2

]
ds.

But ∫ t

2τ

eγsE|x(s− τ)|2ds =

∫ t−τ

τ

eγ(s+τ)E|x(s)|2ds

≤
∫ 2τ

τ

eγ(s+τ)E|x(s)|2ds+

∫ t

τ

eγ(s+τ)E|x(s)|2ds.

Hence, recalling that λ1 − γq̌ ≥ λ2e
γτ ,

eγtEV (x̂t, r(t), t) ≤ C + λ2

∫ 2τ

τ

eγ(s+τ)E|x(s)|2ds.

But we clearly have
EV (x̂t, r(t), t) ≥ q̂E|x(t)|2,

where q̂ = mini∈S λmin(Qi) > 0. We therefore obtain

q̂eγtE|x(t)|2 ≤ C + λ2

∫ 2τ

τ

eγs+τE|x(s)|2ds,

which implies the desired assertion (3.5) immediately. 2

Theorem 3.2 Choose five positive numbers α1, α2, α3 and β1, β2 such that

β1 > max
i∈S

(2‖Bi‖2), α1 > α3β1, α2 > α3β2. (3.7)

Assume that for these chosen numbers, the following LMIs[
K̄i YiGi

GT
i Y

T
i −α3I

]
< 0, i ∈ S (3.8)

have solutions τ̄ > 0 and Qi, Yi ∈ Rn×n with Qi = QT
i > 0, where I is the n× n identity

matrix and

K̄i = QiAi + YiGi + ATi Qi +GT
i Yi +BT

i QiBi +
N∑
j=1

γijQj + (α1 + α2)τ̄ I.

Let τ ∗ be the largest number in (0, τ̄ ] which obeys

max
i∈S

(4τ ∗‖Ai‖2 + 2‖Bi‖2) ≤ β1 and max
i∈S

(4τ ∗‖Q−1
i YiGi‖2) ≤ β2. (3.9)

Then, if τ ≤ τ ∗, by setting

Fi = Q−1
i Yi, i ∈ S, (3.10)

the controlled system (2.3) is exponentially stable in mean square.

6



Proof. We first note that by the well-known Schur complements, the LMIs (3.8) are
equivalent to the following matrix inequalities (MIs)

H̄i := K̄i + α−1
3 YiGi(YiGi)

T < 0, i ∈ S. (3.11)

With Fi defined by (3.10), we compute

2xT (t)Qi[Aix(t) + FiGix(t− τ)]

= 2xT (t)Qi[(Ai + FiGi)x(t)− FiGi(x(t)− x(t− τ))]

≤ xT (t)[Qi(Ai + FiGi) + (Ai + FiGi)
TQi]x(t)

+ α−1
3 |xT (t)QiFiGi|2 + α3|x(t)− x(t− τ)|2.

Hence, we see from (3.3) that

LV (x̂t, i, t) ≤ xT (t)Hix(t)− α2τ(|x(t)|2 − |x(t− τ)|2) + α3|x(t)− x(t− τ)|2

− α1

∫ t

t−τ
|x(s)|2ds− α2

∫ t

t−τ
|x(s− τ)|2ds, (3.12)

where
Hi = Ki + α−1

3 YiGi(YiGi)
T ,

in which

Ki = QiAi + YiGi + ATi Qi +GT
i Yi +BT

i QiBi +
N∑
j=1

γijQj + (α1 + α2)τI.

As τ ≤ τ̄ , we see from (3.11) that

Hi < 0, i ∈ S. (3.13)

Noting

x(t)− x(t− τ) =

∫ t

t−τ
[A(r(s))x(s) + F (r(s))G(r(s))x(s− τ)]ds

+

∫ t

t−τ
B(r(s))x(s)dw(s),

we estimate

E|x(t)− x(t− τ)|2 ≤ 2τE
∫ t

t−τ
|A(r(s))x(s) + F (r(s))G(r(s))x(s− τ)|2ds

+ 2E
∫ t

t−τ
|B(r(s))x(s)|2ds

≤ β̄1E
∫ t

t−τ
|x(s)|2ds+ β̄2E

∫ t

t−τ
|x(s− τ)|2ds,

where
β̄1 = max

i∈S
(4τ‖Ai‖2 + 2‖Bi‖2) and β̄2 = max

i∈S
(4τ‖FiGi‖2).

Recalling (3.9) we observe that β̄1 ≤ β1 and β̄2 ≤ β2. Set

−λ = max
i∈S

λmax(Hi).
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By (3.13), λ > 0. Now, replacing i by r(t) in (3.12), taking the expectation on both sides
of (3.12) and then making use the above estimations we obtain

E(LV (x̂t, r(t), t)) ≤ −(λ+ α2τ)E|x(t)|2 + α2τE|x(t− τ)|2

− (α1 − α3β1)E
∫ t

t−τ
|x(s)|2ds

− (α2 − α3β2)E
∫ t

t−τ
|x(s− τ)|2ds

≤ −λ1E|x(t)|2 + λ2E|x(t− τ)|2 − λ3E
∫ t

t−2τ

|x(s)|2ds, (3.14)

where

λ1 := (λ+ α2τ) > λ2 := α2τ and λ3 := (α1 − α3β1) ∧ (α1 − α3β1) > 0.

Hence the conclusion follows from Lemma 3.1. 2

4 Output Injection: Design G(·) when F (·) is given

Let us now discuss the case where we are given the mapping F : S → Rn×l but are
required to design the mapping G : S → Rl×n. The following theorem gives an answer.

Theorem 4.1 Choose five positive numbers α1, α2, α3 and β1, β2 such that

β1 > max
i∈S

(2‖Bi‖2), α1 > α3β1, α2 > α3β2. (4.1)

Choose furthermore N positive numbers ρi, i ∈ S. Assume that for these chosen numbers,
the following LMIs

Mi1 FiYi
√
α1 + α2Xi Mi2

Y T
i F

T
i −α3ρiI 0 0√

α1 + α2Xi 0 −τ̄ I 0
MT

i2 0 0 −Mi3

 < 0, i ∈ S (4.2)

and

−2Xi + (1 + ρi)I < 0, i ∈ S (4.3)

have solutions τ̄ > 0 and Xi, Yi ∈ Rn×n with Xi = XT
i > 0, where I is the n× n identity

matrix and
Mi1 = AiXi + FiYi +XiA

T
i + Y T

i F
T
i + γiiXi,

Mi2 =
[√

γi1Xi, · · · ,
√
γi(i−1)Xi, XiB

T
i ,
√
γi(i+1)Xi, · · · ,

√
γiNXi

]
,

Mi3 = diag(X1, · · · , XN).

Let τ ∗ be the largest number in (0, τ̄ ] which obeys

max
i∈S

(4τ ∗‖Ai‖2 + 2‖Bi‖2) ≤ β1 and max
i∈S

(4τ ∗‖FiX−1
i Yi‖2) ≤ β2. (4.4)

Then, if τ ≤ τ ∗, by setting

Gi = X−1
i Yi, i ∈ S, (4.5)

the controlled system (2.3) is exponentially stable in mean square.
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Proof. Let Qi = X−1
i and V be the same as defined by (3.1). We still have (3.12) with

Hi = Ki + α−1
3 QiFiGiG

T
i F

T
i Qi,

in which

Ki = QiAi +QiFiGi + ATi Qi +GT
i F

T
i Qi +BT

i QiBi +
N∑
j=1

γijQj + (α1 + α2)τI.

Hence, if we can show that
Hi < 0, i ∈ S, (4.6)

we can still imply (3.14) from (3.12) and hence obtain the assertion by Lemma 3.1 in the
same way as Theorem 3.2 was proved. In other words, to complete the proof, all we need
to do is to show (4.6).

By the Schur complements, (4.6) holds if and only if Ui QiFiGi

√
α1 + α2Qi

GT
i F

T
i Qi −α3I 0√

α1 + α2Qi 0 −τ−1Q2
i

 < 0, i ∈ S, (4.7)

where

Ui = QiAi +QiFiGi + ATi Qi +GT
i F

T
i Qi +BT

i QiBi +
N∑
j=1

γijQj.

Noting that Xi = Q−1
i and Yi = GiXi, we can pre- and post-multiply (4.7) to see that

(4.7) is equivalent to XiUiXi FiYi
√
α1 + α2Xi

Y T
i F

T
i −α3X

2
i 0√

α1 + α2Xi 0 −τ−1I

 < 0, i ∈ S, (4.8)

where

XiUiXi = AiXi + FiYi +XiA
T
i + Y T

i F
T
i +XiB

T
i X

−1
i BiXi

+γiiXi +
∑
j 6=i

γijXiX
−1
j Xi. (4.9)

Now, noting that

0 ≤ (Xi − ρiI)2 = X2
i − 2ρiXi + ρ2

i I = X2
i + ρi(−2Xi + ρi)I,

and recalling condition (4.3), we observe that

−X2
i ≤ ρi(−2Xi + ρi)I = ρi[−2Xi + (1 + ρi)I]− ρiI < −ρiI.

Also, τ ≤ τ ∗ ≤ τ̄−1 implies τ−1 ≥ τ̄ . Hence, under (4.3), the matrix inequalities (4.8) are
guaranteed by  XiUiXi FiYi

√
α1 + α2Xi

Y T
i F

T
i −α3ρiI 0√

α1 + α2Xi 0 −τ̄ I

 < 0, i ∈ S. (4.10)

But, by the Schur complements, these MIs are equivalent to those LMIs in (4.2). The
proof is therefore complete. 2
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5 Stabilisation of Nonlinear Hybrid SDEs

Let us now discuss a more general nonlinear problem. Assume that the underlying system
is now described by a nonlinear hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t). (5.1)

Here, f and g are both mappings from Rn × S × R+ to Rn. Assume that both f and g
are locally Lipschitz continuous and obey the linear growth condition (see e.g. [21]).

Suppose that the given SDE (5.1) is unstable and we are required to design a delay
feedback control u(x(t− τ), r(t)) in the drift part so that the controlled system

dx(t) = [f(x(t), r(t), t) + u(x(t− τ), r(t))]dt+ g(x(t), r(t), t)dw(t) (5.2)

will be mean-square exponentially stable. As the given SDE (5.1) is nonlinear, we may
need to design nonlinear controls. However, we here consider only a class of SDEs which
can be stabilised by linear feedback controls. As in the linear case, we therefore consider
the structure control of the form u(x, i) = F (i)G(i)x, where F and G are mappings from
S to Rn×l and Rl×n, respectively, and one of them is given while the other needs to be
designed. As a result, the controlled system (5.2) becomes

dx(t) = [f(x(t), r(t), t) + F (r(t))G(r(t))x(t− τ)]dt+ g(x(t), r(t), t)dw(t). (5.3)

Again, this controlled system is a hybrid SDDE. Given that our underlying equation (5.1)
is non-delay and it only requires the initial value x(0) ∈ Rn, it is more natural to assume
that for our controlled system (5.3) we know the initial data x(t) on t ∈ [0, τ ]. This can
be interpreted as follows: Let the underlying equation (5.1) evolve from time 0 to τ and
observe the whole segment {x(t) : 0 ≤ t ≤ τ}. Starting from τ on, design the feedback
control F (r(t))G(r(t))x(t− τ) based on the past observation {x(t) : 0 ≤ t ≤ τ} as well as
furthermore observation as time evolves. In other words, we shall regard the controlled
system (5.3) as an SDDE on t ≥ τ with the initial data {x(t) : 0 ≤ t ≤ τ} which are
generated by the SDE (5.1) given the initial value x(0) ∈ Rn. By the theory of hybrid
SDEs (see e.g. [14]), we know

E|x(t)|2 <∞ on t ∈ [0, τ ],

which in turn implies, by the theory of hybrid SDDEs (see e.g. [21]), that

E|x(t)|2 <∞ for t ≥ τ.

Our aim is to design either G(·) given F (·) or F (·) given G(·) so that E|x(t)|2 will tend
to zero exponentially.

We still use the Lyapunov functional defined by (3.1). By the Itô formula (see e.g.
[16, 21]), we have

dV (x̂t, r(t), t) = LV (x̂t, r(t), t)dt+ 2xT (t)Q(r(t))g(x(t), r(t), t)dw(t), (5.4)
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for t ≥ 2τ , where, when r(t) = i,

LV (x̂t, i, t) = 2xT (t)Qi[f(x(t), i, t) + FiGix(t− τ)]

+ gT (x(t), i, t)Qig(x(t), i, t) +
N∑
j=1

γijx
T (t)Qjx(t)

+ α1τ |x(t)|2 − α1

∫ t

t−τ
|x(s)|2ds

+ α2τ |x(t− τ)|2 − α2

∫ t

t−τ
|x(s− τ)|2ds. (5.5)

Clearly, Lemma 3.1 still holds for the non-linear controlled SDDE (5.3) with LV being
defined by (5.5).

Given that we use a linear control to stabilise a nonlinear system, it is natural to
impose some conditions on the nonlinear coefficients f and g. More precisely, we observe
from (5.5) that we need to use the linear term 2xT (t)QiFiGix(t− τ) to control the non-
linear terms 2xTQif(x, i, t) and gT (x(t), i, t)Qig(x(t), i, t). This observation leads us to
impose the following assumption.

Assumption 5.1 For each i ∈ S, there is a pair of symmetric n×n-matrices Qi and Q̄i

with Qi being positive-definite such that

2xTQif(x, i, t) + gT (x, i, t)Qig(x, i, t) ≤ xT Q̄ix

for all (x, i, t) ∈ Rn × S ×R+.

Moreover, we will write

2xT (t)QiFiGix(t− τ) = 2xT (t)QiFiGi

(
x(t)− [x(t)− x(t− τ)]

)
≤ 2xT (t)QiFiGix(t) + α−1

3 |xT (t)QiFiGi|2 + α3|x(t)− x(t− τ)|2, (5.6)

whence we need to estimate E|x(t) − x(t − τ)|2. For this purpose we impose one more
assumption.

Assumption 5.2 There is a pair of positive constants δ1 and δ2 such that

|f(x, i, t)|2 ≤ δ1|x|2 and |g(x, i, t)|2 ≤ δ2|x|2

for all (x, i, t) ∈ Rn × S ×R+.

5.1 Design F (·) given G(·)

Let us first consider the case when G(·) is given so we need to design F (·).

Theorem 5.3 Let Assumptions 5.1 and 5.2 hold. Choose five positive numbers α1, α2, α3

and β1, β2 such that

β1 > 2δ2, α1 > α3β1, α2 > α3β2. (5.7)

11



Assume that for these chosen numbers, the following LMIs[
K̄i QiFiGi

GT
i F

T
i Qi −α3I

]
< 0, i ∈ S (5.8)

have solutions τ̄ > 0 and Fi ∈ Rn×l, where I is the n× n identity matrix and

K̄i = Q̄i +
N∑
j=1

γijQj +QiFiGi +GT
i F

T
i Qi + (α1 + α2)τ̄ I.

Let τ ∗ be the largest number in (0, τ̄ ] which obeys

4τ ∗δ1 + 2δ2 ≤ β1 and 4τ ∗max
i∈S

(‖FiGi‖2) ≤ β2. (5.9)

Then, if τ ≤ τ ∗, the controlled system (5.3) is exponentially stable in mean square.

Proof. By Assumption 5.1, we derive from (5.5) that

LV (x̂t, i, t) ≤ 2xT (t)Q̄ix(t) + 2xT (t)QiFiGix(t− τ) +
N∑
j=1

γijx
T (t)Qjx(t)

+ α1τ |x(t)|2 − α1

∫ t

t−τ
|x(s)|2ds

+ α2τ |x(t− τ)|2 − α2

∫ t

t−τ
|x(s− τ)|2ds. (5.10)

Using (5.6) we then have

LV (x̂t, i, t) ≤ xT (t)Hix(t)− α2τ(|x(t)|2 − |x(t− τ)|2) + α3|x(t)− x(t− τ)|2

− α1

∫ t

t−τ
|x(s)|2ds− α2

∫ t

t−τ
|x(s− τ)|2ds, (5.11)

where
Hi = Ki + α−1

3 QiFiGi(QiFiGi)
T ,

in which

Ki = Q̄i +
N∑
j=1

γijQj +QiFiGi +GT
i F

T
i Qi + (α1 + α2)τI.

However, by the well-known Schur complements, the LMIs (5.8) are equivalent to the
following MIs

H̄i := K̄i + α−1
3 QiFiGi(QiFiGi)

T < 0, i ∈ S. (5.12)

As τ ≤ τ̄ , we then have

Hi < 0, i ∈ S. (5.13)

Noting

x(t)− x(t− τ) =

∫ t

t−τ
f(x(s), r(s), s) + F (r(s))G(r(s))x(s− τ)]ds

+

∫ t

t−τ
g(x(s), r(s), s)dw(s),

12



we estimate, by Assumption 5.2, that

E|x(t)− x(t− τ)|2 ≤ 2τE
∫ t

t−τ
|f(x(s), r(s), s) + F (r(s))G(r(s))x(s− τ)|2ds

+ 2E
∫ t

t−τ
|g(x(s), r(s), s)|2ds

≤ β̄1E
∫ t

t−τ
|x(s)|2ds+ β̄2E

∫ t

t−τ
|x(s− τ)|2ds,

where
β̄1 = 4τδ1 + 2δ2 and β̄2 = 4τ max

i∈S
(‖FiGi‖2).

Recalling (5.9) we observe that β̄1 ≤ β1 and β̄2 ≤ β2. Set

−λ = max
i∈S

λmax(Hi).

By (5.13), λ > 0. Now, replacing i by r(t) in (5.11), taking the expectation on both sides
of (5.11) and then making use the above estimations we obtain

E(LV (x̂t, r(t), t)) ≤ −(λ+ α2τ)E|x(t)|2 + α2τE|x(t− τ)|2

− (α1 − α3β1)E
∫ t

t−τ
|x(s)|2ds

− (α2 − α3β2)E
∫ t

t−τ
|x(s− τ)|2ds

≤ −λ1E|x(t)|2 + λ2E|x(t− τ)|2 − λ3E
∫ t

t−2τ

|x(s)|2ds, (5.14)

where

λ1 := (λ+ α2τ) > λ2 := α2τ and λ3 := (α1 − α3β1) ∧ (α1 − α3β1) > 0.

Hence the conclusion follows from Lemma 3.1. 2

Theorem 5.3 depends on the choices of 2N matrices Qi and Q̄i. In theory, it is flexible,
but in practice, it means more work to be done in finding these 2N matrices. It is in this
spirit that we introduce a stronger assumption.

Assumption 5.4 There are N + 1 symmetric n × n-matrices Z and Zi (i ∈ S) with Z
being positive-definite such that

2xTZf(x, i, t) + gT (x, i, t)Zg(x, i, t) ≤ xTZix

for all (x, i, t) ∈ Rn × S ×R+.

Corollary 5.5 Let Assumptions 5.2 and 5.4 hold. Choose five positive numbers α1, α2, α3

and β1, β2 which obey (5.7). Assume that for these chosen numbers, the following LMIs[
K̄i YiGi

GT
i Y

T
i −α3I

]
< 0, i ∈ S (5.15)
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have solutions τ̄ > 0, qi > 0 and Yi ∈ Rn×l, where I is the n× n identity matrix and

K̄i = qiZi +
N∑
j=1

γijqjZ + YiGi +GT
i Y

T
i + (α1 + α2)τ̄ I.

Let τ ∗ be the largest number in (0, τ̄ ] which obeys

4τ ∗δ1 + 2δ2 ≤ β1 and 4τ ∗max
i∈S

(‖(qiZ)−1YiGi‖2) ≤ β2. (5.16)

Then, if τ ≤ τ ∗, by setting
Fi = (qiZ)−1Yi, i ∈ S,

the controlled system (5.3) is exponentially stable in mean square.

Proof. Assumption 5.4 implies

2xT (qiZ)f(x, i, t) + gT (x, i, t)(qiZ)g(x, i, t) ≤ xT (qiZi)x.

This means that Assumption 5.1 holds with Qi = qiZ and Q̄i = qiZi. Hence the corollary
follows immediately from Theorem 5.3. 2

An even simpler (but in fact stronger) condition is:

Assumption 5.6 There are constants zi (i ∈ S) such that

2xTf(x, i, t) + |g(x, i, t)|2 ≤ zi|x|2

for all (x, i, t) ∈ Rn × S ×R+.

This assumption implies Assumption 5.4 with Z = I and Zi = ziI. Hence, under
Assumptions 5.2 and 5.6, Corollary 5.5 holds with Z = I and Zi = ziI.

5.2 Design G(·) given F (·)

Let us now consider the case when F (·) is given so we need to design G(·). The results
established in the previous subsection work for this case as long as we treat F as given
and seek for G. To be precise, let us state:

Theorem 5.7 Theorem 5.3 holds for this case, if the LMIs (5.8) have solutions τ̄ > 0
and Gi ∈ Rl×n.

Corollary 5.8 Let Assumptions 5.2 and 5.4 hold. Choose five positive numbers α1, α2, α3

and β1, β2 which obey (5.7). Assume that for these chosen numbers, the following LMIs[
K̄i ZFiYi

Y T
i F

T
i Z −α3I

]
< 0, i ∈ S (5.17)

have solutions τ̄ > 0, qi > 0 and Yi ∈ Rl×n, where I is the n× n identity matrix and

K̄i = qiZi +
N∑
j=1

γijqjZ + ZFiYi + Y T
i F

T
i Z + (α1 + α2)τ̄ I.

Let τ ∗ be the largest number in (0, τ̄ ] which obeys

4τ ∗δ1 + 2δ2 ≤ β1 and 4τ ∗max
i∈S

(‖q−1
i FiYi‖2) ≤ β2. (5.18)

Then, if τ ≤ τ ∗, by setting
Gi = q−1

i Yi, i ∈ S,
the controlled system (5.3) is exponentially stable in mean square.
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6 Examples

Let us now discuss some examples to illustrate our theory.

Example 6.1 Consider the controlled SDDE (2.3) with the system matrices given below:

S = {1, 2}, Γ =

[
−1 1

1 −1

]
; A1 =

[
1 −1
1 −5

]
, A2 =

[
−5 −1

1 1

]
;

B1 =

[
1 1
1 −1

]
, B2 =

[
−1 −1
−1 1

]
; G1 = (1, 0), G2 = (0, 1).

Our aim here is to seek for a mapping F : S → R2×1 and τ ∗ > 0 such that if τ ≤ τ ∗, then
the controlled SDDE (2.3) is exponentially stable in mean square. To apply Theorem 3.2,
we choose

α1 = 61, α2 = 101, α3 = 10, β1 = 6, β2 = 10.

Noting ‖B1‖2 = ‖B2‖2 = 2, we see that these positive numbers satisfy (3.7). It is also
not difficult to verify that the LMIs (3.8) have solutions

τ̄ = 0.02, Q1 =

[
1 0
0 2

]
, Q2 =

[
2 0
0 1

]
, Y1 =

[
−10

0

]
, Y2 =

[
0
−10

]
.

It is also easy to compute

‖A1‖2 = ‖A2‖2 = 27.42, ‖Q−1
1 Y1G1‖2 = ‖Q−1

1 Y1G1‖2 = 100.

By (3.9), τ ∗ is the largest number in (0, 0.02] which obeys

4× 27.42τ ∗ + 4 ≤ 6 and 400τ ∗ ≤ 10,

whence τ ∗ = 0.0182. By Theorem 3.2, if τ ≤ 0.0182, by setting

F1 =

[
−10

0

]
, F2 =

[
0
−10

]
,

the corresponding controlled SDDE will be exponentially stable in mean square.

Example 6.2 Let us now discuss one more example, where we will not only illustrate
our theory but also explain a new concept which may motivate a further research.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking
values in the state space S = {1, 2} with generator

Γ =

[
−γ12 γ12

γ21 −γ21

]
.

Consider an unstable nonlinear hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dw(t). (6.1)

Here, f and g are both mappings from Rn × S × R+ to Rn. This SDE may be regarded
as a system which switches between two operation modes, say mode 1 and mode 2, and
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the switching obeys the law of the Markov chain, where in mode 1, the system evolves
according to the SDE

dx(t) = f(x(t), 1, t)dt+ g(x(t), 1, t)dw(t),

while in mode 2, according to the other SDE

dx(t) = f(x(t), 2, t)dt+ g(x(t), 2, t)dw(t).

Assume that in mode 1, the state x(t) can be observed completely but in mode 2, it is
not observable. Therefore, we can design a feedback control in mode 1, with some time
lag of course, but we cannot have a feedback control in mode 2. In terms of mathematics,
the controlled SDE is

dx(t) = [f(x(t), r(t), t) + F (r(t))G(r(t))x(t− τ)]dt+ g(x(t), r(t), t)dw(t), (6.2)

where G1 = I, the n × n identity matrix but G2 = 0. Given G2 = 0 we can simply set
F2 = 0. Hence, the stabilisation problem becomes: can we find a matrix F1 ∈ Rn×n so
that the controlled SDE (6.2) becomes exponentially stable in mean square?

To give a positive answer to the question, we assume that f and g obey Assumptions
5.2 and 5.6. Moreover, we assume that

γ21 − z2 ≥ 3γ12. (6.3)

This means that the rate at which the system switches from the unobservable mode 2 to
the observable mode 1 should be sufficiently larger than the rate from mode 1 to mode 2.
This is reasonable because the system in mode 2 is not controllable while it is controllable
(hence stabilisable) in mode 1.

To apply Corollary 5.5, we need to find five positive numbers α1, α2, α3 and β1, β2

that obey

β1 > 2δ2, α1 > α3β1, α2 > α3β2, (6.4)

as well as to find positive numbers τ̄ , q1, q2 and a matrix Y1 ∈ Rn×n such that[
K̄1 Y1

Y T
1 −α3I

]
< 0 and K̄2 < 0, (6.5)

where
K̄1 = q1z1I + γ12(q2 − q1)I + Y1 + Y T

1 + (α1 + α2)τ̄ I,

and
K̄2 = q2z2I + γ21(q1 − q2)I + (α1 + α2)τ̄ I.

We first choose β1 > 2δ2 and β2 > 0. Let α3 > 0 be a free parameter to be determined
and set

α1 = α3β1 + 1, α2 = α3β2 + 1. (6.6)

Clearly, (6.6) is therefore satisfied. Choose furthermore that

τ̄ =
1

3(β1 + β2)
. (6.7)
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Now, set

q1 = 1, q2 =
α3

γ21 − z2

, Y1 = −α3I. (6.8)

We then have

K̄1 =
(
z1 − γ12 +

γ12α3

γ21 − z2

− 2α3 + [α3(β1 + β2) + 2]τ̄
)
I

≤
(
z1 − γ12 −

4

3
α3 + 2τ̄

)
I (6.9)

and

K̄2 =
(
γ21 − α3 + [α3(β1 + β2) + 2]τ̄

)
I =

(
γ21 −

2

3
α3 + 2τ̄

)
I. (6.10)

We now set
α3 = [3(z1 − γ12 + 2τ̄ + 1)] ∨ [1.5(γ21 + 2τ̄ + 1)]. (6.11)

Then
K̄1 ≤ −(α3 + 1)I and K̄2 ≤ −I,

whence [
K̄1 Y1

Y T
1 −α3I

]
≤
[
−(α3 + 1)I −α3I
−α3I −α3I

]
< 0,

namely (6.5) is satisfied. In summary, we choose β1 > 2δ2, β2 > 0, and set τ̄ , α3, α1 and
α2 by (6.7), (6.11) and (6.6), respectively, then τ̄ and q1, q2, Y1 specified by (6.8) obey
the LMI (6.5).

Finally, let τ ∗ be the largest number in (0, τ̄ ] that obeys

4τ ∗δ1 + 2δ2 ≤ β1 and 4τ ∗(γ21 − z2) ≤ β2,

namely

τ ∗ =
( 1

3(β1 + β2)

)
∧
(β1 − 2δ2

4δ2

)
∧
( β2

4(γ21 − z2)

)
. (6.12)

Then, by Corollary 5.5, we can conclude that if τ ≤ τ ∗, by setting

F1 = −α3I

the controlled system (6.2) is exponentially stable in mean square.

7 Further Comments

In this paper we have shown clearly that unstable hybrid SDEs can be stabilised by delay
state feedback and output injection. Let us make a few comments to close our paper.

First of all, we emphasise once again that to make our theory more understandable as
well as to avoid complicated notations, we have restricted our underlying hybrid systems
to a relatively simple form, namely the hybrid SDE (1.1) driven by a scalar Brownian
motion. Our theory can certainly be generalised to cope with more general hybrid SDEs
driven by multi-dimensional Brownian motions as well as SDDEs.

Mathematically speaking, our stability analysis is based on the Lyapunov functional
defined by (3.1). It is certainly possible to design more general Lyapunov functionals to
obtain more general stabilisation criteria, for example

V (x̂t, r(t), t) = xT (t)Q(r(t))x(t) +

∫ t

t−τ

∫ t

s

[
xT (u)U1x(u) + xT (u− τ)U2x(u− τ)

]
duds,
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with U1 = UT
1 ≥ 0 and U2 = UT

2 ≥ 0.

Moreover, Example 6.2 demonstrates that it is possible to stabilise an unstable hybrid
SDE even though we can only control the system in some modes. The idea illustrated
there can be developed into a general partial control problem but we will report elsewhere
due to the page limit of this paper.
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