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Abstract

In this paper we analyse a stochastic model representing HIV internal

virus dynamics. The stochasticity in the model is introduced by param-

eter perturbation which is a standard technique in stochastic population

modelling. We show that the model established in this paper possesses

non-negative solutions as this is essential in any population dynamics

model. We also carry out analysis on the asymptotic behaviour of the

model. We approximate one of the variables by a mean reverting process

and find out the mean and variance of this process. Numerical simulations

conclude the paper.
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1 Introduction

Since its discovery in 1981, HIV has spread relentlessly throughout the world
and now is a major epidemic worldwide. HIV spreads by attacking the immune
system, in particular by depleting the CD4 cells. The pathogenesis of HIV
infection is a function of the virus life cycle, the host cellular environment, and
quantity of virus in the infected individual. Factors such as age or genetic
differences among individuals, the level of virulence of an individual strain of
virus, and co-infection with other microbes may influence the rate and severity
of disease progression.

Cells with CD4 receptors at the site of HIV entry become infected and viral
replication begins within them. The infected cells can then release virions or
infected cells can undergo lysis to release new virions, which can then infect
additional cells. CD4 cells, the primary targets of HIV, become infected as they
encounter HIV. Active replication of HIV occurs at all stages of the infection.
Over a period of years, even when little virus is detectable in the blood,
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significant amounts of virus accumulate within infected cells. This interaction
between the virus and the immune system is called HIV internal viral dynamics.
In this paper we will formulate a stochastic model for this host virus interaction.

Modelling the interaction between HIV-1 virus and CD4 cells has been a
major area of research for many years [4,10,11]. Mathematical models have
come to play an important part in biological systems. Mathematics makes it
possible to make predictions about the behaviour of the system. We try to
obtain some analytical results for the stochastic model posed in this paper. In
particular we derive expressions for the expected value and the variance of the
limit process.

There are real benefits to be gained in using stochastic rather than
deterministic models. Real life is stochastic rather than deterministic,
particularly when modelling biological phenomena such as internal HIV viral
dynamics. This is because different cells and infective virus particles reacting in
the same environment can often give different results. In this paper we model
the effect of environmental stochasticity on some of the model parameters.
Stochastic models produce more useful output than deterministic models as
by running a stochastic model many times we can build up a distribution of
the predicted outcomes, for example the number of infected cells at time t,
whilst a deterministic model will just give a single predicted value. Having a
distribution for the predicted outcomes is more versatile as it helps us examine
practically important essentially stochastic quantities, for example the variance
of the number of infective virus particles at a given time and the probability
that the infective virus particles have died out at a given time, which cannot
be examined using deterministic models. Even quantities such as the expected
values of the number of cells can be more accurately modelled using stochastic
models because they include the effect of random variation on these quantities
which deterministic models cannot.

Other work by Dalal, Greenhalgh and Mao [9] introduces stochasticity into
a model of AIDS and condom use via the technique of parameter perturbation
which is standard in stochastic population modelling. They show that the
model established in the paper possesses non-negative solutions as desired in any
population dynamics. They also carried out a detailed analysis on asymptotic
stability both in probability one and in p’th moment. Our results reveal that a
certain type of stochastic perturbation may help stabilise the system.

Abell, Braselton and Braselton [1] incorporate basic genetics into an AIDS
model. They illustrate that if a homozygote is immune to the disease or resistant
to the disease, the corresponding allele goes to fixation. On the other hand if the
heterozygote is immune to the disease or is resistant to the effects of the disease,
polymorphism usually occurs. Li and Ma [18] study asymptotic properties of an
HIV-1 infection model with a time delay. Based on some important biological
meanings, a class of more general HIV-1 infection models with a time delay
is proposed in the paper. In the HIV-1 infection model time delay is used to
describe the time between infection of uninfected target cells and the emission of
viral particles as proposed by Herz et al. [18]. Then the effect of time delay on
the stability of the equilibria of the HIV-1 infection model has been studied and
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sufficient criteria for the local asymptotic stability of the infected equilibrium
and global asymptotic stability of the viral-free equilibrium are given.

Many mathematical models have been developed to describe the viral
dynamics of HIV-1, mostly using a system of ordinary differential equations.
Perelson et al. [28] tried to estimate the length of the life cycle of the virus.
Korthals Altes et al. [16] concentrated on the question of whether it was
advisable to stimulate CD4 cell response. They found that only when the
virus has a low basic reproductive number does the number of CD4 cells at
the moment of infection influence the outcome of infection. Di Mascio et al.
[10] provided a statistical characterisation of transient viraemia observed in 123
patients, suggesting that patients have different tendencies to show transient
viraemia during the period of viral load suppression. Ding and Wu [11] modelled
the effect of Reverse Transcriptase Inhibitor drugs as inhibition rates of cell
infection and Protease Inhibitor drugs as inhibition rates of infectious virus
production based on the biological mechanisms of these two different types of
drugs. They showed that the two viral decay rates are monotone functions of
the treatment effects of these antiviral therapies.

We start the paper by proving the positivity of the solutions which is a
very important property for any model on population dynamics which uses
stochastic differential equations. We then focus on the stability aspect of the
three variables in question. We show that under certain conditions the number
of infected cells and virus particles will both almost surely tend to zero (their
disease free equilibrium value). We introduce a mean reverting process and show
that the number of healthy cells tends in probability to this mean reverting
process. Hence the number of healthy cells is stable in distribution. We then
give details of the parameters of the mean reverting process. Finally we present
a section on simulations of the system and end the paper with our conclusions.

2 Deterministic model

This process of HIV-1 pathogenesis can be slowed down or reversed to a certain
extent by Highly Active Antiretroviral Treatment (HAART). Primarily HAART
inhibits the process of virus particle formation. This keeps the viral load down
and in turn increases the quantity of CD4 cells. The model we are going to
study is a stochastic model of viral dynamics including the effect of HAART.

Verotta and Schaedeli [31] used nonlinear models to present the virus
dynamics of HIV-1 which can incorporate different factors associated with
resurgence. They first gave a nonlinear model of HIV-1 dynamics, then included
drug exposure, compliance to treatment and insurgence of resistant HIV-1
strains. They also showed the application of the models using real AIDS clinical
trial data involving patients treated with a combination of antiretroviral drugs.

Nelson and Perelson [25] were of the opinion that models that include
intracellular delays are more accurate representations of the biology and change
the estimated values of kinetic parameters when compared to models without
delays. They developed and analysed a set of models that included intracellular
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delays, combination antiretroviral therapy, and the dynamics of both infected
and uninfected T cells. They showed that for less than perfect drug effect, the
value of the death rate of productively infected cells is increased when data is
fitted with delay models compared to the values estimated with a non-delay
model. They also provided some general results on the stability of the system.

Very recently Ciupe et al. [7] discussed the dynamics of HIV-1 infection
consisting of three distinct phases starting with primary infection, then latency
and finally AIDS or drug therapy. In this paper the dynamics of primary
infection and the beginning of latency was modelled. They showed that allowing
for time delays in the model better predicts viral load data when compared to
models with no time delays. They also found that the model of primary infection
predicts the turnover rates for productively infected T cells and viral totals to be
much longer than those observed from patients receiving antiviral drug therapy.
However, they also showed that with the data available the results are highly
sensitive to the chosen model. They compared the results using analysis and
Monte Carlo techniques for three different models and showed how each predicts
rather dramatic differences between the fitted parameters.

We propose the following three dimensional model to describe the viral
dynamics in the presence of HIV-1 infection and HAART:

dx1(t)

dt
= λ− δx1(t) − (1 − γ)βx1(t)x3(t),

dx2(t)

dt
= (1 − γ)βx1(t)x3(t) − ax2(t),

and
dx3(t)

dt
= (1 − η)Nax2(t) − ux3(t) − (1 − γ)βx1(t)x3(t)

with suitable initial conditions. This model captures mathematically the viral
dynamics of HIV-1 virus interacting with CD4 cells. The model is represented
diagrammatically by Figure 1.

< Figure 1. >

Figure 1. Box diagram representing cell and virus dynamics.

HAART is generally a combination of reverse transcriptase inhibitor (RTI)
drugs and protease inhibitor (PI) drugs. RTI drugs are designed to prevent
the conversion of HIV RNA to DNA in early stages of HIV replication. Thus
RTI drugs block conversion of uninfected cells to infected cells. PI drugs are
designed to intervene in the last stage of the virus replication cycle to prevent
HIV from being properly assembled, and thus cause the newly produced virus to
be noninfectious [11]. The variables and parameters in the model are described
as follows:
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x1(t) is the concentration of uninfected cells;

x2(t) is the concentration of infected cells;

x3(t) is the concentration of virus particles;

(1-γ) is the reverse transcriptase inhibitor drug effect;

(1-η) is the protease inhibitor drug effect;

λ is the total rate of production of healthy cells per unit time;

δ is the per capita death rate of healthy cells;

β is the transmission coefficient between uninfected cells and infective

virus particles;

a is the per capita death rate of infected cells;

N is the average number of infective virus particles produced by an

infected cell in the absence of HAART during its entire infectious

lifetime;

u is the per capita death rate of infective virus particles.

Note that when a single infective virus particle infects a single uninfected
cell the virus particle is absorbed into the uninfected cell and effectively dies.
Hence the term (1 − γ)βx1x3 appears in all the three equations.

It is clear that the above model has a unique disease-free equilibrium given
by (λ/δ1, 0, 0). Each newly infected cell entering the disease-free equilibrium
remains infected for time (1/a) and during this time produces (1 − η)N
infective virus particles. As an approximation assuming that the system is
still near the disease-free equilibrium each infective virus particle survives for
time (u+ (1 − γ)βλ/δ) and during this time infects

(1 − γ)β λ
δ

(

u+ (1 − γ)β λ
δ

) =
(1 − γ)βλ

δu+ (1 − γ)βλ

cells. R0, the basic reproduction number, is defined as the expected number
of secondary infected cells caused by a single infected cell entering the disease-
free population at equilibrium. Here a secondary infected cell is a cell which is
infected by an infective virus particle which is produced by the initial infected
cell. Hence

R0 =
(1 − γ)βλN(1 − η)

(δu+ βλ(1 − γ))
.

R0 can also be interpreted as the expected number of secondary infected
virus particles caused by a single infected virus particle entering the disease-
free population at equilibrium. Here a secondary infective virus particle is an
infective virus particle produced by an infected cell which was infected by the
original infective virus particle. We obtain the same expression for R0.
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The deterministic model has been analysed by Tuckwell and Wan [30]. They
show that if R0 ≤ 1 then the disease-free equilibrium is the unique equilibrium
and if R0 > 1 then as well as the disease-free equilibrium there is a unique
endemic equilibrium given by

x∗1 =
u

β(1 − γ)[N(1 − η) − 1]
,

x∗2 =
βλ(1 − γ)N(1 − η) − βλ(1 − γ) − δu

aβ(1 − γ)(N(1 − η) − 1)
,

x∗3 =
βλ(1 − γ)N(1 − η) − βλ(1 − γ) − δu

(1 − γ)βu
.

Moreover if R0 < 1 the disease-free equilibrium is locally asymptotically
stable, whilst if R0 > 1 then the disease-free equilibrium is unstable whilst the
unique endemic equilibrium is locally asymptotically stable. Thus if R0 < 1
we expect the number of infected cells and infected virus particles to die out
and the number of uninfected cells to approach λ/δ, whilst if R0 > 1 we expect
the number of uninfected cells, infected cells and infective virus particles to
approach their unique endemic equilibrium values.

Perelson et al. [28] studied a simplified version of our deterministic model.
They assume that the number of uninfected cells is constant. They later
introduce drug treatment and fit the model to data. Bonhoeffer et al. [4] analyse
a simplified version of our deterministic model where the term (1−γ)βx1(t)x3(t)
is neglected as an approximation. They do not include any stochastic effects.
They show that there is a basic reproduction number R0 which determines
the behaviour of the system. For R0 ≤ 1 there is a unique disease-free
equilibrium which is locally asymptotically stable but for R0 > 1 there is a
unique endemic equilibrium. They later modify the basic model to include the
effect of resistance. Di Mascio et al. [10] take the simple deterministic model
of Bonhoeffer et al. and modify it to introduce the effect of HAART in a
similar way as we have done. They later discuss another model and fitting their
models to data. Nelson and Perelson [25] outline the basic model discussed by
Bonhoeffer et al. [4]. They discuss modification of this basic model to summarise
the effects of drug therapy on virus concentration and introduce a time delay
into the model. The model is then fitted to data.

All of the above models are deterministic models and do not introduce
stochastic effects. The other models discussed in our literature review such as
Ding and Wu [11], Korthals Altes et al. [16], Ciupe et al. [7] and Verotta and
Schaedeli [31] have similarities with our model but introduce extra or different
variables such as two types of infected cells, two types of infective virus particles
or CD8 cells.
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3 Stochastic Model Derivation

There are a range of mechanisms through which CD4 cell death takes place.
This includes syncytium formation and apoptosis among other things [23]. The
clearance rate of virions can be caused by a variety of factors including binding
and entry into cells and immune elimination [28]. Since both the death rates of
the cells and the virus are affected by many complicated biological phenomena
we think that there is randomness involved in these death rates.

Taking these factors into account we introduce randomness into the model
by replacing the parameters δ, a and u by δ → δ + σ1Ḃ1(t), a → a + σ1Ḃ1(t)
and u → u + σ2Ḃ2(t). This is only a first step in introducing stochasticity into
the model. Ideally we would also like to introduce stochastic environmental
variation into the other parameters such as the transmission coefficient β and λ,
the total rate of production of healthy cells per unit time, but to do this would
make the analysis much too difficult.

Hence we get the following system of stochastic differential equations:

dx1(t) =
(

λ− δx1(t) − (1 − γ)βx1(t)x3(t)
)

dt− σ1x1(t)dB1(t), (1)

dx2(t) =
(

(1 − γ)βx1(t)x3(t) − ax2(t)
)

dt− σ1x2(t)dB1(t), (2)

and dx3(t) =
(

(1 − η)Nax2(t) − ux3(t) − (1 − γ)βx1(t)x3(t)
)

dt

− σ2x3(t)dB2(t) (3)

with suitable initial conditions.
Here B1(t) and B2(t) are independent standard Brownian motions. When

there is randomness in parameters such as the disease death rate it is a standard
technique to introduce environmental noise into the parameters in this way
[3,5,14,21,22]. Note that the intensity of the noise σ and the Brownian motion
B(t) are the same for uninfected and infected CD4 cells, but different for CD4
cells and virus particles. This is because whilst the biological factors affecting
the death rates of infected and uninfected CD4 cells can be expected to be very
similar, different biological factors affect CD4 cells and virus particles.

Hence although in the absence of detailed biological data it is possible
that the intensity of the noise σ and the Brownian motion B(t) are different
for uninfected and infected CD4 cells it is plausible as a first simplifying
approximation to assume that these are the same. As CD4 cells and virus
particles are much more different biological entities it seems much more possible
that both σ and B(t) are different between CD4 cells and infective virus
particles.

Note that the situation with no infected cells and no infective virus particles
present

(x1, x2, x3) = (λ/δ, 0, 0)
is an equilibrium point in the deterministic model but not for the stochastic
model. In the stochastic model the last two co-ordinates (x2, x3) = (0, 0) are
still a stochastic equilibrium, but the situation is changed for the first co-ordinate
of the process which we shall see later varies stochastically around the value λ/δ.
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4 Non Negative Solutions

It is important that we do not have to worry about negative values when dealing
with a model of population dynamics is concerned. Hence we first prove the
positivity of the solutions.

In this paper, unless otherwise specified, we let (Ω,F , P ) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.
it is increasing and right continuous while F0 contains all P -null sets). Let B(t)
be the one dimensional Brownian motion defined on this probability space. Also
let R3

++ = {x ∈ R3 : xi > 0 for all 1 ≤ i ≤ 3} and let x(t) = (x1(t), x2(t),
x3(t)).

Before proving the main theorem we put forward a lemma.

Lemma 4.1 The following inequality holds

u ≤ 2(u+ 1 − log(u)) − (4 − 2 log 2) ∀ u > 0.

Proof: Define, for u > 0,

f(u) = u+ 2 − 2 log(u).

f(u) has a minimum at u = 2. The result follows.

We now prove the main theorem.

Theorem 4.1 Assume that 0 < γ, η < 1 and that δ, λ, a, u,N and β are positive
real numbers. Then for any initial value x0 ∈ R3

++, there is a unique solution
x(t) to Eqns (1) - (3) on t ≥ 0 and the solution will remain in R3

++ with
probability 1, namely x(t) ∈ R3

++ for all t ≥ 0 almost surely.

Proof: Since the coefficients of the equation are locally Lipschitz continuous,
for any given initial value x0 ∈ R3

++ there is a unique local solution x(t) on t ∈
[0,τe), where τe is the explosion time [2,13]. To show this solution is global, we
need to show that τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large so that every
component of x0 lies within the interval [1/k0, k0]. For each integer k ≥ k0,
define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) 6∈ (1/k, k) for some i, 1 ≤ i ≤ 3},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty
set). Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ τe
a.s. If we can show that τ∞ = ∞ a.s. then τe = ∞ and x(t) ∈ R3

++ a.s. for
all t ≥ 0. In other words, to complete the proof all we need to show is that
τ∞ = ∞ a.s. For if this statement is false, then there is a pair of constants T >
0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T} > ǫ.
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Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ǫ for all k ≥ k1. (4)

Define a C2-function V : R3
++ → R++ by

V (x) =

3
∑

i=1

[xi + 1 − log(xi)].

The non-negativity of this function can be seen from u+1− log(u) ≥ 0, ∀ u > 0.
Using Itô’s formula we get,

dV (x(t)) =

[(

1 −
1

x1(t)

)

(

λ− δx1(t) − (1 − γ)βx1(t)x3(t)
)

+

(

1 −
1

x2(t)

)

(

(1 − γ)βx1(t)x3(t) − ax2(t)
)

+

(

1 −
1

x3(t)

)

(

(1 − η)Nax2(t) − ux3(t) − (1 − γ)βx1(t)x3(t)
)

+ σ2
1 +

σ2
2

2

]

dt+ σ1(2 − x1(t) − x2(t))dB1(t)

+σ2(1 − x3(t))dB2(t)

=

[

λ− δx1(t) − (1 − γ)βx1(t)x3(t) + (1 − γ)βx1(t)x3(t)

−ax2(t) + (1 − η)Nax2(t) − ux3(t) − (1 − γ)βx1(t)x3(t)

−
λ

x1(t)
+ δ + (1 − γ)βx3(t) −

(1 − γ)

x2(t)
βx1(t)x3(t) + a

−
(1 − η)Nax2(t)

x3(t)
+ u+ (1 − γ)βx1(t) + σ2

1 +
σ2

2

2

]

dt

+ σ1(2 − x1(t) − x2(t))dB1(t) + σ2(1 − x3(t))dB2(t).

Hence

dV (x(t)) ≤

[

λ+ δ + a+ u+ σ2
1 +

σ2
2

2
+ (1 − η)Nax2(t) + (1 − γ)βx3(t)

+ (1 − γ)βx1(t)

]

dt+ σ1(2 − x1(t) − x2(t))dB1(t)

+ σ2(1 − x3(t))dB2(t).

Write c1 = λ+ δ + a+ u+ σ2
1 +

σ2
2

2
and c2 = 2(1 − η)Na+ 2(1 − γ)β.
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By Lemma 4.1, xi ≤ 2(xi + 1 − log(xi)) so (1 − η)Nax2(t) + (1 − γ)βx3(t) +
(1 − γ)βx2(t) ≤ c2V (x). Therefore

dV (x(t)) ≤ (c1 + c2V (x))dt+ σ1(2 − x1(t) − x2(t))dB1(t) +

σ2(1 − x3(t))dB2(t).

Hence

dV (x(t)) ≤ c3(1 + V (x)) + σ1(2 − x1(t) − x2(t))dB1(t) + σ2(1 − x3(t))dB2(t)

where c3 = max(c1,c2). Therefore if t1 ≤ T ,

∫ τk∧t1

0

dV (x(t)) ≤

∫ τk∧t1

0

c3(1 + V (x(t))) dt

+

∫ τk∧t1

0

σ1(2 − x1(t) − x2(t)) dB1(t)

+

∫ τk∧t1

0

σ2(1 − x3(t)) dB2(t).

This implies that,

EV (x(τk ∧ t1)) ≤ V (x0) + E

∫ τk∧t1

0

c3(1 + V (x(t)))dt,

≤ V (x0) + c3t1 + c3E

∫ τk∧t1

0

V (x(t))dt,

≤ V (x0) + c3T + c3E

∫ t1

0

V (x(τk ∧ t))dt,

= V (x0) + c3T + c3

∫ t1

0

EV (x(τk ∧ t))dt.

By the Gronwall inequality,

EV (x(τk ∧ T )) ≤ c4 (5)

where c4 = (V (x0) + c3T )ec3T .

Set Ωk = {τk ≤ T} for k ≥ k1 and by (4), P (Ωk) ≥ ǫ. Note that for every
ω ∈ Ωk, there is some i (1 ≤ i ≤ 3) such that xi(τk, ω) equals either k or 1/k,
and hence V (x(τk, ω)) is no less than the smallest of

k + 1 - log(k) and (1/k) + 1 - log(1/k) = (1/k) + 1 + log(k).

Consequently,

V (x(τk, ω)) ≥ [k + 1 − log(k)] ∧ [(1/k) + 1 + log(k)].
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It then follows from (4) and (5) that,

c4 ≥ E[1Ωk
(ω)V (x(τk, ω))]

≥ ǫ([k + 1 − log(k)] ∧ [(1/k) + 1 + log(k)]),

where 1Ωk
is the indicator function of Ωk. Letting k → ∞ leads to the

contradiction ∞ > c4 = ∞. So we must therefore have τ∞ = ∞ a.s.
In the next section we look at the asymptotic behaviour of the system and

try to obtain some more analytical results.

5 Asymptotic Behaviour

For the deterministic system the disease free equilibrium is (λ/δ, 0, 0). Recall
that this is not an equilibrium point for the stochastic model where (x2, x3) =
(0, 0) is still a stochastic equilibrium but the first co-ordinate instead of being
fixed at λ/δ follows a stochastic process which varies around the value λ/δ. First
we consider x2(t), x3(t) and find the conditions for exponential stability. Then
we obtain the stability in distribution of x1(t).

Definition 5.1 ([19] , p.119) Let (Ω,F , P ) be a complete probability space with
a filtration {Ft}t≥0 which is right continuous and F0 contains all P -null sets.

Suppose that 0 ≤ t0 < T < ∞. Let x0 be an Ft0-measurable Rd-valued
random variable such that E|x0|

2 < ∞. Let f : Rd × [t0, T ] → Rd and
g : Rd×[t0, T ] → Rd×m be both Borel measurable with f(0, t) = 0 and g(0, t) = 0
for all t ≥ t0. Consider the d-dimensional stochastic differential equation of Itô-
type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (6)

on t0 ≤ t ≤ T , with initial value x(t0) = x0. Write x(t; t0, x0) for the value of
the solution to this equation at time t.

The trivial solution of equation (6) is said to be almost surely exponentially
stable if

lim
t→∞

sup
1

t
log |x(t; t0, x0)| < 0 a.s.

for all x0 ∈ Rd.

Theorem 5.1 Under the following two conditions:

(i) 2[(1 − η)Na− a] − σ2
1 < 0;

(ii) [((1 − η)Na− a) − u]2 < (σ2
2 + 2u)(σ2

1 − 2[(1 − η)Na− a]);

x2(t) and x3(t) are almost surely exponentially stable in the sense that x2(t) and
x3(t) will tend to their equilibrium value 0 exponentially with probability 1.
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Proof: From equations (2) and (3) consider d
(

x2(t) + x3(t)
)

.

d
(

x2(t) + x3(t)
)

=

(

(1 − γ)βx1(t)x3(t) − ax2(t) + (1 − η)Nax2(t) − ux3(t) −

(1 − γ)βx1(t)x3(t)

)

dt− σ1x2(t)dB1(t) − σ2x3(t)dB2(t).

Let x = (x2, x3) and V (x) = log
(

x2 + x3

)

for x2, x3 ∈ (0,∞). Using Itô’s
formula we get,

dV (x(t)) =

(

(1 − η)Nax2(t)

x2(t) + x3(t)
−

ax2(t)

x2(t) + x3(t)
−

ux3(t)

x2(t) + x3(t)

−
1

2

σ2
1x

2
2(t)

(x2(t) + x3(t))2
−

1

2

σ2
2x

2
3(t)

(x2(t) + x3(t))2

)

dt

−
σ1x2(t)

(x2(t) + x3(t))
dB1(t) −

σ2x3(t)

(x2(t) + x3(t))
dB2(t).

Simplifying we get

dV (x(t)) =
1

2(x2(t) + x3(t))2

(

2
(

x2(t) + x3(t)
)(

(1 − η)Nax2(t) − ax2(t)

−ux3(t)
)

− σ2
1x

2
2(t) − σ2

2x
2
3(t)

)

dt

−
σ1x2(t)

(x2(t) + x3(t))
dB1(t) −

σ2x3(t)

(x2(t) + x3(t))
dB2(t).

We can write the term
(

2
(

x2(t) + x3(t)
)(

(1 − η)Nax2(t) − ax2(t) − ux3(t)
)

− σ2
1x

2
2(t) − σ2

2x
2
3(t)

)

in the following way

(

x2(t) x3(t)
)

(

2
(

(1 − η)Na− a
)

− σ2
1

(

(1 − η)Na− a
)

− u
(

(1 − η)Na− a
)

− u −2u− σ2
2

) (

x2(t)
x3(t)

)

.

Hence we can write dV (x(t)) as

dV (x(t))

=
1

2(x2(t) + x3(t))2

{

(

x2(t) x3(t)
)

(

2
(

(1 − η)Na− a
)

− σ2
1

(

(1 − η)Na− a
)

− u
(

(1 − η)Na− a
)

− u −2u− σ2
2

) (

x2(t)
x3(t)

) }

dt

−
σ1x2(t)

(x2(t) + x3(t))
dB1(t) −

σ2x3(t)

(x2(t) + x3(t))
dB2(t).

12



Now consider the matrix
(

2
(

(1 − η)Na− a
)

− σ2
1

(

(1 − η)Na− a
)

− u
(

(1 − η)Na− a
)

− u −2u− σ2
2

)

.

As the above matrix is negative-definite with largest (negative) eigenvalue λmax

then

(

x2(t) x3(t)
)

(

2
(

(1 − η)Na− a
)

− σ2
1 2

(

(1 − η)Na− a
)

− u
2
(

(1 − η)Na− a
)

− u −2u− σ2
2

) (

x2(t)
x3(t)

)

≤ λmax

(

x2
2(t) + x2

3(t)
)

= −
∣

∣λmax

∣

∣

(

x2
2(t) + x2

3(t)
)

.

Therefore

dV (x(t)) ≤

(

−
∣

∣λmax

∣

∣

1

2(x2(t) + x3(t))2
(

x2
2(t) + x2

3(t)
)

)

dt

−
σ1x2(t)

(x2(t) + x3(t))
dB1(t) −

σ2x3(t)

(x2(t) + x3(t))
dB2(t). (7)

As 0.5(x2
2 + x2

3) ≥ x2x3 we can write − (x2
2 + x2

3) ≤ − 0.5(x2 + x3)
2.

Substituting this in inequality (7) we get

dV (x(t)) ≤ −
1

4
|λmax| dt−

σ1x2(t)

(x2(t) + x3(t))
dB1(t)

−
σ2x3(t)

(x2(t) + x3(t))
dB2(t),

d
(

log(x2(t) + x3(t))
)

≤ −
1

4
|λmax|dt−

σ1x2(t)

(x2(t) + x3(t))
dB1(t)

−
σ2x3(t)

(x2(t) + x3(t))
dB2(t).

Integrating the above inequality and using the fact that

lim sup
t→∞

1

t
|Bi(t)| = 0 for i = 1, 2, Mao [19],

we get

lim sup
t→∞

1

t
log

(

x2(t) + x3(t)
)

≤ −
1

4

∣

∣λmax

∣

∣ < 0 a.s.

Hence x2(t) → 0 and x3(t) → 0 a.s. as t → ∞. This completes the proof of
Theorem 5.1.
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Note that Theorem 5.1 does not assume anything about R0, in particular
it does not assume that R0 < 1. Note also that the conditions of Theorem 5.1
cannot possibly be satisfied in the deterministic model when σ1 = σ2 = 0.

The constraints on the variances in Theorem 5.1 (i) and (ii) have no obvious
biological meaning in themselves. However note that the expression (1 − η)Na
is the per capita rate at which an infected cell produces virus particles in
the presence of HAART. Under the condition (1 − η)N < 1, i.e. an infected
cell produces on average less than one infective virus particle during its entire
infectious lifetime, which implies that R0 < 1, the first condition in Theorem 5.1
will always be true. If the variances σ2

1 and σ2
2 are large enough these conditions

will always be satisfied. This is an interesting result as it says that if the noise
variances are large enough then the populations of infected cells and infective
virus particles will always die out, whatever the other parameter values, even if
R0 > 1. Thus the behaviour of the stochastic system with added environmental
noise can be very different than the behaviour of the basic deterministic system.

We now concentrate on x1(t). We shall eventually show that x1(t) is stable
in distribution in the sense that it stabilises around the mean value λ/δ. To do
this we introduce a new stochastic process z(t) which is defined by its initial
condition z(0) = x1(0) and the stochastic differential equation

dz(t) =
(

λ− δz(t)
)

dt− σ1z(t)dB1(t).

We shall show that in the limit as t becomes large x1(t) can be approximated
by z(t) so

lim
t→∞

(

z(t) − x1(t)
)

= 0 in probability.

To help with the proof we introduce another function yǫ(t) which is defined by
the initial condition yǫ(0) = x1(0) and the stochastic differential equation

dyǫ(t) =
(

λ− (δ + ǫ)yǫ(t)
)

dt− σ1yǫ(t)dB1(t). (8)

Theorem 5.2 Under the conditions of Theorem 5.1,

lim
t→∞

(

z(t) − x1(t)
)

= 0 in probability.

Proof: The original equation is

dx1(t) =

(

λ− δx1(t) − (1 − γ)βx1(t)x3(t)

)

dt− σ1x1(t)dB1(t).

First we prove that

lim inf
t→∞

(

x1(t) − yǫ(t)

)

≥ 0 a.s.
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Therefore consider

d
(

x1(t) − yǫ(t)
)

=

(

− δ
(

x1(t) − yǫ(t)
)

+ ǫyǫ(t) − (1 − γ)βx1(t)x3(t)

)

dt

− σ1

(

x1(t) − yǫ(t)
)

dB1(t)

=

(

− (δ + ǫ)
(

x1(t) − yǫ(t)
)

+
(

ǫ− (1 − γ)βx3(t)
)

x1(t)

)

dt

− σ1

(

x1(t) − yǫ(t)
)

dB1(t).

The solution is given by

x1(t) − yǫ(t) = ψ(t)

∫ t

0

ψ−1(s)
(

ǫ− (1 − γ)βx3(s)
)

x1(s)ds

where

ψ(t) = exp

{

−

(

δ + ǫ+
σ2

1

2

)

t− σ1B1(t)

}

.

Using the result of Theorem 5.1 where it has been shown that x3(t) → 0 a.s. as
t → ∞ we can write, for almost all ω ∈ Ω ∃ T = T (ω) such that

x3(t) <
ǫ

(1 − γ)β
∀ t ≥ T.

Hence for all ω ∈ Ω, if t > T , then

x1(t) − yǫ(t) = ψ(t)

(
∫ T

0

ψ−1(s)
(

ǫ− (1 − γ)βx3(s)
)

x1(s)ds

+

∫ t

T

ψ−1(s)
(

ǫ− (1 − γ)βx3(s)
)

x1(s)ds

)

.

Hence x1(t) − yǫ(t) ≥ ψ(t) κ(T ) where

κ(T ) =

∫ T

0

ψ−1(s)
(

ǫ− (1 − γ)βx3(s)
)

x1(s)ds.

Clearly |κ(T )| < ∞ and ψ(t) → 0 a.s.

Therefore

lim inf
t→∞

(

x1(t) − yǫ(t)
)

≥ 0 a.s. (9)

Next we prove lim inft→∞

(

z(t) – x1(t)
)

≥ 0 a.s. For this consider

d
(

z(t) − x1(t)
)

=

(

− δ
(

z(t) − x1(t)
)

+ (1 − γ)βx1(t)x3(t)

)

dt

− σ1

(

z(t) − x1(t)
)

dB1(t).
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This implies that

d
(

z(t) − x1(t)
)

≥ −δ
(

z(t) − x1(t)
)

dt− σ1

(

z(t) − x1(t)
)

dB1(t).

Let ξ = z − x1. Hence

dξ(t) ≥ −δξ(t)dt− σ1ξ(t)dB1(t).

For any ω ∈ Ω either

ω ∈ Ω1 = {ω : ξ(t0) > 0 for some t0 ≥ 0}

or ω ∈ Ω2 = {ω : ξ(t) ≤ 0 for all t ≥ 0}.

For ω ∈ Ω1 then let t1 = sup { t : t ≥ t0 and ξ(t) > 0 }. If t1 < ∞ then in
[t0, t1]

dξ(t) =
(

− δ + f(t)
)

ξ(t)dt− σ1ξ(t)dB1(t) (10)

where f(t) ≥ 0 is a random variable. The solution of (10) is given by

ξ(t) = ξ(t0) exp

{
∫ t

0

(

−δ + f(s) −
σ2

1

2

)

ds− σ1B1(t)

}

> 0.

Hence

ξ(t1) = ξ(t0) exp

{
∫ t1

t0

(

−δ + f(s) −
σ2

1

2

)

ds− σ1B1(s)

}

> 0.

Thus ξ(t) > 0 in [t1, t1 + δ1] for some δ1 > 0. This is a contradiction. Hence
t1 = ∞ and ξ(t) ≥ 0 for all t ≥ t0. So lim inft→∞ ξ(t) ≥ 0 a.s.

It remains to consider the case ω ∈ Ω2 where ξ(t) ≤ 0 for all t ≥ 0. Then

dξ(t) =
(

− δ − f(t)
)

ξ(t)dt− σ1ξ(t)dB1(t) (11)

where f(t) ≥ 0 is a random variable. The solution of (11) is given by

ξ(t) = ξ(0) exp

{
∫ t

0

(

−δ − f(s) −
σ2

1

2

)

ds− σ1B1(t)

}

= 0.

Hence lim inft→∞ ξ(t) ≥ 0 a.s. That is

lim inf
t→∞

(

z(t) − x1(t)
)

≥ 0 a.s. (12)

Next consider d(yǫ(t) − z(t)).

d
(

yǫ(t) − z(t)
)

=

(

− δ
(

yǫ(t) − z(t)
)

− ǫyǫ(t)

)

dt− σ1

(

yǫ(t) − z(t)
)

dB1(t).
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The solution is written as

yǫ(t) − z(t) = − ǫ exp

{

−

(

δ +
σ2

1

2

)

t− σ1B1(t)

}

∫ t

0

exp

{(

δ +
σ2

1

2

)

s+ σ1B1(s)

}

yǫ(s)ds.

Note that yǫ(s) ≥ 0 as it is a solution of a linear stochastic differential equation
(8) which can be solved explicitly to give

yǫ(t) = λ

∫ t

0

exp

{

−

(

δ + ǫ+
σ2

1

2

)

(t− s) − σ1

(

B1(t) −B1(s)
)

}

ds. (13)

Therefore

∣

∣yǫ(t) − z(t)
∣

∣ = ǫ

∫ t

0

yǫ(s) exp

{

−

(

δ +
σ2

1

2

)

(t− s) − σ1

(

B1(t) −B1(s)
)

}

ds.

Since B1(t) − B1(s) ∼ N(0, t − s) we write

E

[

exp
[

− σ1

(

B1(t) −B1(s)
)]

]

=

∫ ∞

−∞

e−σ1u 1
√

2π(t− s)
e−u2/2(t−s)du,

=
1

√

2π(t− s)

∫ ∞

−∞

exp

{

−1

2(t− s)

(

u2 + 2(t− s)σ1u
)

}

du,

=
1

√

2π(t− s)
exp

{

σ2
1(t− s)

2

}
∫ ∞

−∞

exp

{

−1

2(t− s)

{

u+ (t− s)σ1

}2
}

du.

Hence

E

[

exp
[

− σ1(B1(t) −B1(s))
]

]

= exp

{

σ2
1(t− s)

2

}

. (14)

Therefore

E
∣

∣yǫ(t) − z(t)
∣

∣

= ǫE

[
∫ t

0

yǫ(s) exp

{

−

(

δ +
σ2

1

2

)

(t− s) − σ1(B1(t) −B1(s))

}

ds

]

= ǫ

∫ t

0

E

[

yǫ(s) exp

{

−

(

δ +
σ2

1

2

)

(t− s) − σ1(B1(t) −B1(s))

}

ds

]

= ǫ

∫ t

0

E

[

yǫ(s) exp

{

−

(

δ +
σ2

1

2

)

(t− s)

}]

E

[

exp[−σ1(B1(t) −B1(s))]

]

ds

as yǫ(s) is independent of B1(t) −B1(s),

= ǫ

∫ t

0

exp{−δ(t− s)} Eyǫ(s)ds, using (14). (15)
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Taking the expectation of (13) and using (14) we see that

Eyǫ(t) = λ

∫ t

0

exp {−(δ + ǫ)(t− s)} ds

≤
λ

δ + ǫ
.

Substituting this result in (15) we get

E
∣

∣yǫ(t) − z(t)
∣

∣ ≤
λǫ

δ + ǫ

∫ t

0

exp{−δ(t− s)}ds

≤
λǫe−δt

(δ + ǫ)δ
(eδt − 1).

Hence we can write
lim
ǫ→0

lim
t→∞

E
∣

∣yǫ(t) − z(t)
∣

∣ = 0.

This implies that

lim
ǫ→0

lim
t→∞

∣

∣yǫ(t) − z(t)
∣

∣ = 0 in probability. (16)

Combining (9), (12) and (16) we obtain the required assertion. This completes
the proof of Theorem 9.

In the next section we try and obtain some more information about the mean
reverting process.

6 Mean Reverting Process

As we are approximating the process x1(t) by z(t) we wish to find some
information about the process z(t). We try and do that here by finding the
parameters of the process such as the mean and the variance.

The mean reverting process is given by

dz(t) =

(

λ− δz(t)

)

dt− σ1z(t)dB1(t).

The explicit solution of the above equation is given by

z(t) = z(0) exp

{

−

(

δ +
σ2

1

2

)

t− σ1B1(t)

}

+ λ

∫ t

0

exp

{

−

(

δ +
σ2

1

2

)

(t− s) − σ1

(

B1(t) −B1(s)
)

}

ds.

Taking the expectation and using (14) we get

E
(

z(t)
)

= z(0) e−δt +
λ

δ

(

1 − e−δt

)

.
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Hence taking the limit we get

lim
t→∞

E
(

z(t)
)

=
λ

δ
.

To find the second moment consider V (z(t)) = z2. Using Itô’s formula we get

d
(

z2(t)
)

=
(

σ2
1 − 2δ

)

z2(t)dt+ 2λz(t)dt− 2σ1z
2(t)dB1(t).

Therefore

z2(t) = z2(0) +

∫ t

0

(

σ2
1 − 2δ

)

z2(s)ds+ 2λ

∫ t

0

z(s)ds− 2 σ1

∫ t

0

z2(s)dB1(s).

Taking expectation we get

E
(

z2(t)
)

= E
(

z2(0)
)

+

∫ t

0

(

σ2
1 − 2δ

)

E
(

z2(s)
)

ds+ 2λ

∫ t

0

E
(

z(s)
)

ds.

Differentiating with respect to t we deduce that

d

dt
E

(

z2(t)
)

= (σ2
1 − 2δ)E

(

z2(t)
)

+ 2λE
(

z(t)
)

.

d

dt

{

E
(

z2(t)e−(σ2

1
−2δ)t

)

}

= 2λE
(

z(t)
)

e−(σ2

1
−2δ)t.

Integrating and multiplying by e(σ
2

1
−2δ)t we deduce that

E
(

z2(t)
)

= E
(

z2(0)
)

e(σ
2

1
−2δ)t + 2λ e(σ

2

1
−2δ)t

∫ t

0

e−(σ2

1
−2δ)s E

(

z(s)
)

ds.

Now substituting the value of E
(

z(s)
)

in the above equation we see that

E
(

z2(t)
)

= E
(

z2(0)
)

e(σ
2

1
−2δ)t + 2λ e(σ

2

1
−2δ)t

{
∫ t

0

e−(σ2

1
−2δ)s

(

z(0) e−δs +
λ

δ

(

1 − e−δs
)

)}

ds.

Simplifying we get

E
(

z2(t)
)

= E
(

z2(0)
)

e(σ
2

1
−2δ)t + 2λ e(σ

2

1
−2δ)t

{

z(0)

∫ t

0

e−(σ2

1
−2δ)s e−δsds

+
λ

δ

∫ t

0

e−(σ2

1
−2δ)s

(

1 − e−δs

)

ds

}

,

= E
(

z2(0)
)

e(σ
2

1
−2δ)t

+2λ e(σ
2

1
−2δ)t

{

−

(

z(0) − λ
δ

σ2
1 − δ

)(

e−(σ2

1
−δ)t − 1

)
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−
λ

δ(σ2
1 − 2δ)

(

e−(σ2

1
−2δ)t − 1

)}

, provided that σ2
1 6= δ, 2δ,

= E
(

z2(0)
)

e(σ
2

1
−2δ)t − 2λ

(

z(0) − λ
δ

σ2
1 − δ

)

e−δt

+ 2λ

(

z(0) − λ
δ

σ2
1 − δ

)

e(σ
2

1
−2δ)t −

2λ2

δ(σ2
1 − 2δ)

+
2λ2

δ(σ2
1 − 2δ)

e(σ
2

1
−2δ)t.

Taking the limit we need σ2
1 < 2δ for limt→∞ E

(

z2(t)
)

< ∞, when we obtain

lim
t→∞

E
(

z2(t)
)

=
2λ2

δ(2δ − σ2
1)
.

The above term is positive since σ2
1 − 2δ < 0. Hence the asymptotic variance

of the mean reverting process is

lim
t→∞

V
(

z(t)
)

=
2λ2

δ(2δ − σ2
1)

−
λ2

δ2
=

λ2σ2
1

δ2(2δ − σ2
1)
.

A similar argument shows that if σ2
1 = δ then

lim
t→∞

V (z(t)) =
λ2

δ2
,

and if σ2
1 ≥ 2δ then limt→∞ V (z(t)) = ∞.

Hence if σ2
1 < 2δ then the limit process has finite variance σ2

1 given by

λ2σ2
1

δ2(2δ − σ2
1)

whereas if σ2
1 ≥ 2δ then the limit process has infinite variance.

7 Simulations

According to our analytical results the infected cells and the virus particles
are both exponentially stable and tend to zero under conditions specified in
Theorem 5.1. Also we see that we can asymptotically approximate x1(t) by
z(t) where z(t) is the mean reverting process. We now try and support our
analytical results by simulations. Our simulation programs have been written
in FORTRAN and the results were verified by running them repeatedly and
extensively checking the results.

< Figure 2. >

Figure 2. HIV in vivo virus dynamics deterministic differential equation
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model approaches the disease free equilibrium for R0 < 1.

< Figure 3. >

Figure 3. Stochastic simulation corresponding to Figure 2.

To illustrate the stochastic effects clearly we performed simulations first
for the deterministic case (Figure 2) and then for a corresponding stochastic
simulation (Figure 3). The parameter values used have all been taken from
published literature. δ, u, a have been taken from [4], N from [6], β from [27]
and λ from [26]. The parameter values for Figure 2 are β = 1×10−8 day−1 dm3,
λ = 106 day−1 dm−3, N = 100 per cell, γ = 0.5, η = 0.5, a = 0.5 day−1, δ = 0.1
day−1 and u = 5 day−1. The initial values were x1(0) = 10000 dm−3, x2(0) =
10000 dm−3 and x3(0) = 10000 dm−3. The corresponding stochastic simulation
Figure 3 uses the same parameter and initial values but additionally has σ1

= 0.1 and σ2 = 0.1. It is straightforward to verify that with these parameter
values R0 = 0.495 < 1 and that the conditions of Theorem 5.1 are not satisfied.

As can be clearly seen from Figures 2 and 3 both x2(t) and x3(t) tend
to zero exponentially in both the deterministic and stochastic models. These
simulations and others suggest that when R0 for the deterministic model is less
than one, in the stochastic model both x2(t) and x3(t) tend to zero exponentially
even if the conditions of Theorem 5.1 are not satisfied. Comparing Figures 2
and 3 one can also see the stochastic effects very clearly.

< Figure 4. >

Figure 4. Distribution of x1(t) at large time t.

< Figure 5. >

Figure 5. Distribution of z(t) at large time t.

Figures 4 and 5 represent the histograms of the values of x1(t) and z(t)
respectively. The parameter values and the initial values are the same as in
Figure 2 but this time we took σ1 = σ2 = 0.01. These values were recorded
at a single large time t = 9000 days from one thousand different realisations
of each of the two stochastic processes. Comparing these figures we see that
the distribution of both the variables x1(t) and z(t) at large times look very
similar. The variables are distributed around the mean value of λ/δ, the
actual value being 107. A two sample Kolmogorov-Smirnov test for equality of
distribution was performed using a 5% significance level and showed that the two
distributions could not be distinguished statistically (test statistic D = 0.033,
p-value = 0.6476). We see that if t is large then z(t) is a good approximation
to x1(t) in the situation where x2(t) and x3(t) tend to zero.
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8 Conclusions

In this paper, we have considered a stochastic model describing the viral
dynamics of HIV-1 infection. We first proved the positivity of the solutions.
Then we looked at the stability aspect of the model. We proved that the numbers
of infected cells and virus particles tended asymptotically to zero exponentially
almost surely. We also showed that x1(t) approached a mean reverting process
z(t) in probability. We then supported our analytical results with the help of
simulations.

Most previously studied models of internal HIV dynamics in the literature
have used deterministic differential equation models, ignoring stochastic effects.
Perelson et al. [28] assumed that the number of uninfected cells was a
constant and modelled the dynamics of infected cells and infective virus
particles. Bonhoeffer et al. [4], Di Mascio et al. [10] and Nelson and Perelson
[25] discuss models similar to our deterministic model, neglecting the term
(1 − γ)βx1(t)x3(t) as an approximation. Di Mascio et al. introduce HAART
and Nelson and Perelson introduce protease inhibitor drug therapy. Tuckwell
and Wan [30] discuss and analyse our deterministic model including the term
(1 − γ)βx1(t)x3(t) and obtain equilibrium and stability results.

The only stochastic differential equation model which we are aware of for HIV
internal viral dynamics is due to Tuckwell and Le Corfec [29] who use a stochastic
differential equation model. Their model has similarities with ours but they use
two types of infected cells, latently infected cells and actively infected cells. The
variance terms are also different being functionally dependent on the variables.
They explore the model using simulation only and do not give any analytical
results.

Our work shows that stochastic differential equations give another option to
model viral dynamics. By replicating the results from the deterministic case [8]
and improving some we have shown that the stochastic model as discussed here
adds another dimension to model viral dynamics. It adds a different perspective
to this particular problem and gives researchers a different route which they can
take in the future. As most real world problems are not deterministic including
stochastic effects into the model gives us a more realistic way of modelling viral
dynamics.

For example using a stochastic model we were able to examine the limiting
asymptotic distribution of the number of uninfected cells, infected cells and
infective virus particles and derive an expression for the limiting asymptotic
variance of the distribution of the number of uninfected cells. Stochastic models
are more versatile than deterministic models because they incorporate random
effects such as environmental stochasticity and enable us to model quantities
such as probability distributions of variables, probabilities of extinction and
variances which are features which cannot be included in a deterministic model.
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Figure 1: Box diagram representing cell and virus dynamics.
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Figure 2: HIV in vivo virus dynamics deterministic differential equation model
approaches the disease free equilibrium for R0 < 1.
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Figure 3: Stochastic simulation corresponding to Figure 2.
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Figure 4: Distribution of x1(t) at large time t.
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Figure 5: Distribution of z(t) at large time t.
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