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ABSTRACT  

An approach for removing multiple light scattering effects using the radiative transfer theory (RTE) in 

order to improve the performance of multivariate calibration models is proposed. This approach is then 

applied to the problem of building calibration models for predicting the concentration of a scattering 

(particulate) component. Application of this approach to a simulated four component system showed 
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that it will lead to calibration models which perform appreciably better than when empirically scatter 

corrected measurements of diffuse transmittance (Td) or reflectance (Rd) are used. The validity of the 

method was also tested experimentally using a two-component (Polystyrene-water) system. While the 

proposed method led to a model that performed better than that built using Rd, its performance was 

worse compared to when Td measurements were used. Analysis indicates that this is because the model 

built using Td benefits from the strong secondary correlation between particle concentration and 

pathlength travelled by the photons which occurs due to the system containing only two components. 

On the other hand, the model arising from the proposed methodology uses essentially only the chemical 

(polystyrene) signal. Thus this approach can be expected to work better in multi-component systems 

where the pathlength correlation would not exist. 

KEYWORDS: Scatter correction, Multivariate calibration, Near-infrared spectroscopy, Multiple 

scattering, Radiative transfer equation, Adding-doubling method. 

 

INTRODUCTION 

Accurate estimation of concentrations of chemical components in turbid samples using spectroscopic 

techniques is still an open-end problem that challenges chemometricians and other applied scientists.1 

The effective solution to this problem is of tremendous practical importance since it is encountered in 

many areas such as monitoring polymerization2-5 and fermentation6,7 processes and in medical 

diagnostics8. Spectroscopic measurements have the potential for providing such information and would 

be preferable, because they are fast, cheap, compatible with fibre optics and multifunctional. 

The main problem, in the quantitative analysis of turbid samples using Near-infrared (NIR) 

spectroscopy, is that multivariate calibration models built on conventional spectroscopic measurements 

such as transmittance or reflectance are adversely affected by variations arising from multiple light 

scattering, because these variations are not necessarily related to changes in chemical information i.e. 

concentrations of chemical components. There are essentially two ways to deal with undesirable 
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scattering effects in NIR measurements: remove/minimize them by means of empirical pre-processing 

or separate scattering effects from absorption by invoking light propagation theory such as the radiative 

transfer theory. In either case, the goal is to obtain a measure of absorption per unit length, which is 

independent from variations in pathlength of photons that occur due to multiple scattering and linearly 

proportional to concentrations of constituents.  

The most frequently used approach for scatter correction has been empirical pre-processing because 

of its simplicity. A number of techniques such as standard normal variate, orthogonal signal correction, 

multiplicative scatter correction (MSC) and extended MSC (EMSC) have been used to reduce multiple 

scattering effects9. Although these may be sufficient when the variations due to scattering are small and 

when the signal of the target analytes is large, they are not adequate when variations in scattering are 

high as is usually the case in many industrial situations. Recently, a physics-based EMSC has been 

proposed, where the physics of light transport is incorporated to further improve the removal of 

scattering effects10. 

Very little work has been done on the applicability of the second approach for scatter correction in 

process analytics mainly due to complex measurements and theory required to extract the absorption 

and scattering properties of a sample. The measurement techniques for deconvolution of scattering and 

absorption properties were developed primarily for biomedical applications. The only application of this 

scatter correction approach for development of Process Analytical Technologies (PAT) was reported by 

Abrahamsson et. al.11 They applied it on pharmaceutical tablets and showed a significant improvement 

in the accuracy of predictions in comparison with direct application of Partial Least Squares (PLS) 

regression on transmittance measurements. The methodology they used has several shortcomings: two 

instruments are required (time resolved and conventional spectrometer), diffusion approximation 

assumptions have to be met and the reduced scattering coefficient could not be measured beyond 1100 

nm using their time resolved system (whereas the overtones of the organic compounds appear in the 

NIR region above 1100 nm) and therefore it had to be extrapolated for the higher wavelength region.  
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The aim of this research was to develop a methodology for estimation of chemical information in 

suspensions where the radiative transfer theory is used to remove multiple scattering effects. Broadly, 

the problem of extracting concentration of chemical species in a particulate system (suspensions or 

powder mixtures) can be classified into two groups viz. the extraction of information of a chemical 

species that (a) purely absorbs or (b) both absorbs and scatters light.  

The work reported in this paper consists of two parts: simulation and experiment. Simulation study 

was used to show the maximum theoretical improvement in the prediction accuracy possible using the 

methodology described in this paper. A simple polystyrene-water system was used to evaluate the 

performance of the proposed methodology on an experimental dataset. This paper focuses on the 

problem arising when the chemical species of interest both absorbs and scatters light. 

 

THEORY 

A turbid sample is a heterogeneous sample that scatters light e.g. particles suspended in water. The 

problem in obtaining a good calibration model for turbid samples using conventional chemometrics 

stems from the fact that the measured change in absorbance or optical density cannot be effectively 

correlated with changes in concentrations of chemical components because it is confounded with 

changes caused by light scattering. The problem is illustrated in figure 1. 

Figure 1(a) represents case (a) where light passes through a homogenous liquid mixture. In this case, 

the photons only undergo absorption. Figure 1(b) represents case (b) where light passes through a turbid 

sample (particles suspended in liquid) with particle concentrations sufficiently low that the photons 

passing through the sample encounter a particle only once (single scattering). Figure 1(c) represents 

case (c) where the particle concentration is sufficiently high such that the photons encounter several 

particles i.e. undergo multiple scattering events before exiting the sample. Since the direction of the 

photons change during each scattering event, the total pathlength travelled by the photon before exiting 

the sample will be different from (greater than or equal to) the sample thickness. From the point of 

making measurements for estimating the concentrations of chemical components, it is desirable to 
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choose a configuration that provides measurements that are proportional to the concentrations of the 

chemical components. For case (a) this is achieved in a straightforward manner by measuring the axially 

(collimated) transmitted light and applying Beer-Lambert’s law which for a sample containing  n 

chemical species is given by: 
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where σa,i is the absorption cross section of chemical species i, ci is its concentration and λ is the 

wavelength of light. The pathlength travelled by the photons in this case is the sample thickness ℓ. In 

case (b) such a measurement can still be made, though the Beer-Lambert equation needs to be modified 

as: 

∑
=

⋅⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

n

i
iiextc c

I
ITA

1
,

0

)(
)(
)(ln)ln()( λσ
λ
λλ l       (2) 

where , is the extinction cross-section and isiaiext ,,, σ+σ=σ is,σ is the scattering cross-section 

which is non-zero for those species which are particles. The scattering cross-section is a highly non-

linear function of particle size and shape. In this case, even though Beer’s law applies, the situation is 

complicated by the presence of non-linear scattering effects since for the same concentration of the 

scattering species, two different particle sizes would lead to changes in the absorbance which need to be 

corrected when building calibration models. In Case (c), the extent of multiple scattering becomes too 

high which precludes accurate measurement of the un-scattered axially transmitted light both due to the 

small fraction of light that would have managed to travel without being scattered as well as due to the 

fact that as the amount of scattering increases, an increasing amount of forward scattered light will be 

included in the measurement. Thus for such turbid samples, either diffuse reflectance or diffuse 

transmittance measurements are made. Since these measurements (schematically shown in figure 1(b) 

and (c)) involve collection of light exiting from the sample in all directions, the average pathlength 

travelled by the photons is no longer equal to the sample thickness and it is not constant from sample to 
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sample with the variation depending on the variation in the scattering properties of the sample which in 

turn depends on the particle size, shape and concentration. 

In the first case, multivariate calibration is straight-forward because absorption varies only with 

concentrations of chemical components (the other two terms, the absorption cross section and the path 

length are constant) and this relationship is linear (see eq. 1). Therefore PLS models that are based on 

the assumption of linear relationship between the absorbance and concentrations of the species, usually 

give very good results. In the second case, however, two terms in equation 2 can vary: the 

concentrations and the extinction cross-section of particles (the pathlength of light is constant). In the 

third case, the concentrations, the extinction cross-section of particles and the pathlength of light can all 

vary. This leads to confounding effects in the estimation of concentration of chemical components in 

turbid samples which arise because different combination of values of concentration, pathlength and 

extinction cross-section can lead to the same measurement value A(λ) in equation (2). From the point of 

inverting the measurement value to obtain the concentration of species, since the contribution from 

these 3 parameters due to changes in particle size, shape and concentration cannot be distinguished from 

each other, it could cause potentially large errors in the estimated concentrations and thus will result in 

lack of robustness. In addition, these variations are nonlinear and therefore they degrade linear 

calibration models. Thus to obtain accurate calibration models for turbid samples, variations in the 

pathlength and the absorption cross section of particles have to be corrected. 

The main source of variation in absorption in the multiple scattering regime is the pathlength of 

photons, see fig. 1 c.). In principle, this variation can be eliminated by obtaining a measure of 

absorption per unit length, which is independent of pathlength, using radiative transfer theory. The 

change in the intensity of light of a given wavelength travelling through a sample in a certain direction 

is described by the radiative transfer equation (RTE):12
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)where   is the specific intensity at a distance r from source along directional vector s, µa( s,rI  (cm )-1  is 

the bulk absorption coefficient, µs (cm-1) is the bulk scattering coefficient, sat µµµ += is the total 

extinction coefficient,  is the phase function, which is a measure of the angular distribution of 

scattered light and ω is the solid angle. The bulk absorption and scattering coefficients are proportional 

to concentrations of absorbing and scattering components respectively. For a system with multiple 

components the bulk absorption and scattering coefficients are the sum of the respective coefficients of 

individual components: 
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where σap,j and σsp,j are the absorption and scattering cross-sections (cm ) of the particulate species j, c2
p,j 

is the concentration of the particulate species j expressed as number density i.e. number of particles per 

unit volume (cm ) and n-3
p is the number of different particulate species present in the sample. σa,k 

represents the absorptivity (cm2/g) of the purely absorbing species k, ck is the concentration (g/cm3) of 

the absorbing species k and na is the number of purely absorbing species present in the sample. It should 

be noted that the bulk absorption and scattering coefficients as well as the absorption and scattering 

cross-sections of the particles and the absorptivity of the purely absorbing species are all wavelength 

dependent. In equation 4 µa has been split into two terms. The first summation represents the 

contribution from the particulate species and the second summation represents the contribution from the 

purely absorbing species. The first term will vary both due to the concentration of the particulate species 

as well as its particle size because the absorption cross-section σap,j is dependent on the particle size and 

shape. The second term varies only with the concentration of the purely absorbing species. In equation 5 

the contribution to the scattering coefficient is only from the particulate species present in the sample. 

The scattering cross-sections of the particulate species are dependent on particle size and shape. 

 



The phase function p describes the angular distribution of scattered light at a particular wavelength. 

There are several phase functions that have been used among which the most common is the Henyey-

Greenstein phase function: 

 p θ,g( )= 1− g2

1+ g2 − 2 ⋅ g ⋅ cosθ( )3
        (6) 

where θ – is an angle between incident and scattered directions and g is the anisotropy factor. As we can 

see from equations 3-6, at each wavelength, the RTE is defined by three variables µa, µs and g (called 

bulk optical properties). To extract them the inverse RTE has to be solved. Since there are three 

parameters involved, to invert the RTE we need atleast three measurements at each wavelength. One 

can notice that µa is a measure of absorption per unit length (cm-1) and it is independent of the 

pathlength travelled by the photons. However, it is still not free from scattering variations due to 

changes in absorption cross section of particles σap, which is a function of particle size and shape. 

 

MATERIALS AND METHODS 

RTE based scatter correction and calibration approach 

The proposed methodology for estimation of concentrations of chemical components in suspensions is 

outlined in figure 2. Essentially, it is a two step procedure: acquisition of the bulk optical properties and 

then extraction of pertinent chemical information from µa. The other two properties µs and g can be 

potentially used to correct µa for changes in µa,p though such approaches are not considered in this 

paper. As mentioned earlier, in order to extract the bulk optical properties by inverting the RTE, atleast 

three measurements are required. The three measurements used in this study for extraction of the optical 

properties were: total diffuse transmittance Td, total diffuse reflectance Rd and collimated transmittance 

Tc. To obtain the bulk optical properties from these measurements we need to invert the radiative 

transfer equation. There is no analytical solution to the radiative transfer equation, but there are a few 

numerical solutions such as Adding-Doubling (AD)13, Monte Carlo (MC)14 and Discrete Ordinates12 

method. Of these the AD and the MC methods are the most frequently used. The MC method can 
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accommodate any type of measurement geometry (e.g. spatially-resolved measurements which measure 

reflectances at specific distances from the incident beam) and can also take into account incident beam 

shape (collimated, diverging etc.), finite beam width and sample width14. The disadvantage is that this 

approach is computationally very intensive. The AD method is much faster but does not take into 

account beam width and assumes that the sample is of infinite width thus ignoring any light loss through 

the sides of the sample which in some cases could lead to significant errors. This method is well suited 

for computing total diffuse reflectance and transmittance measurements but cannot be used for 

computing spatially-resolved measurements. The AD method has been widely used to extract optical 

properties from chemical and biological systems (bacteria, blood, tissue etc.) when integrating sphere 

measurement set-ups are used to measure total diffuse reflectance and transmittance 

measurements13,15,16 since computationally it is much faster than the MC method.  Therefore, in this 

work, the inverse Adding-Doubling algorithm (IAD) which iteratively applies the AD method was used 

to invert the RTE13. 

The influence of particle size changes on the accuracy of predictions was also investigated in this 

work. After extracting the bulk absorption coefficient using the RTE to invert the measurements, the 

resulting absorption spectra (i.e. the bulk absorption coefficient as a function of wavelength) is used for 

building a multivariate calibration model for estimating the concentration of the chemical component of 

interest.  Before building the models additional empirical pre-processing to further reduce unwanted 

variations could also be included as part of this approach. 

 

SIMULATION 

The proposed approach was applied to a simulated dataset of spectra of turbid samples (considered 

previously by Thennadil and Martin9) to test the extent of improvement in model performance that can 

be theoretically obtained compared to the performance that would be obtained using empirical scatter-

correction approaches. In their work, Thennadil and Martin modelled the turbid system as a four 

component system comprising one scattering component (polystyrene particles) and three non-
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scattering components which were simulated using the optical properties of toluene (species 2), 

deuterated water (species 3) and water (species 4). The volume fraction of particles varied between 0.01 

and 0.1 and the radius of particles spanned the range 100nm to 500nm. The volume fraction of species 2 

and 3 spanned the ranges 0-0.0115 and 0.2-0.4 respectively. The spectra were simulated using the 

radiative transfer equation. Noise was then added to the spectra to resemble the real measurements. 

Thennadil and Martin used the dataset so created to study the effectiveness of various pre-processing 

techniques on calibration models built for predicting the concentration of a non-scattering component. 

In the current study this dataset consisting of 50 calibration samples and 391 test set samples was used 

to compare the proposed approach of using the extracted bulk absorption spectra for building calibration 

models for a scattering component with those obtained using the traditional approach of using diffuse 

reflectance or transmittance measurements with empirical pre-processing to remove scattering effects.  

 

EXPERIMENT 

Design of experiments. To test the methodology on experimental data a simple two component system, 

polystyrene particles suspended in deionised water was used with the aim of estimating the 

concentration of polystyrene particles from NIR measurements. The samples were prepared according 

to the following experimental design – five particle sizes: 100nm, 200nm, 300nm, 430nm and 500nm, 

seven concentrations (in wt.%) for each particle size: 0.1%, 0.5%, 0.9%, 1.23%, 1.6%, 1.95 and 2.3%, 

giving a total of 35 samples.  

It should be noted that there are two major differences between the system studied using simulations 

and the model system used to generate the experimental dataset. The first is that in the simulation a 4 

component system was considered whereas the experimental model system has only 2 components. 

Secondly, the simulation dataset spans a much larger range of concentrations of scattering component 

(1-10%). Thus the highest particle concentration in the simulated dataset is almost 5 times larger than 

that considered in the model experimental system. The implication of the latter point is that multiple 

scattering effects would be much more dominant in the simulated system. Since the maximum particle 
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concentration in the experimental system is only 2.3%, the multiple scattering effects will be 

comparatively small. As a result, in this regime (two component system with low multiple scattering) 

we would expect calibration models based on single measurements (reflectance or transmittance) with 

empirical scatter correction approaches to work reasonably well. Such a relatively simple system was 

chosen since it would allow us to examine the accuracy of the complex inversion steps and the 

instrumentation setup involved in the extraction of the bulk optical properties. If the bulk absorption 

coefficient is extracted with sufficient accuracy, then the calibration model built using this approach 

will perform as well as or better than the single measurement approaches. This would validate the 

approach in terms of its accuracy as well as highlight any problems in the inversion methodology that 

need to be addressed for the successful implementation of this method for more complex systems.  

  

Measurement setup. Three spectroscopic measurements Tc, Td and Rd
*were taken for each sample using 

a scanning spectrophotometer (CARY 5000, Varian Inc.) with a diffuse reflectance accessory. Spectral 

data was collected in the wavelength region 1600-1848 nm at 4 nm intervals resulting in measurements 

at 63 discrete wavelengths per spectrum. This region was chosen because the first overtone peaks of 

polystyrene due to C-H stretching vibrations appear around 1680 nm. The Peltier (TE) cooled PbS 

detector was used for this wavelength region. An average integration time was set to 0.4 s, the 

bandwidth and the energy level were automatically adjusted to obtain good signal-to-noise ratio. The 

collimated transmittance (Tc)

)

 was measured with the instrument’s standard configuration. For the total 

diffuse reflectance (Rd  and total diffuse transmittance (Td) measurements an external diffuse 

reflectance accessory (DRA-2500, Varian Inc.) was mounted. It consists of a 150 mm diameter 

integrating sphere (Labsphere), which has a port-to-sphere area ratio of less than 10%. The sphere is 

coated with “Spectralon” material, which acts as an almost perfect Lambertian surface. A schematic 

representation of the different measurement configurations is shown in figure 1. In the case of a total 
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diffuse transmittance measurement, the sample is placed at the entrance port of the sphere, while the 

exit port is blocked with “Spectralon” reflectance standard. In this way, both collimated and diffusely 

transmitted light is collected by the detector. For a total reflectance measurement, the sample is placed 

at the exit port of the sphere, so that all light reflected by the sample is collected in the sphere. To obtain 

similar irradiation conditions for transmittance and reflectance measurements (i.e. illumination area and 

angle) different focusing lenses were used. 

 

Extraction of the optical properties 

The measurement set-up and the algorithm used for the extraction of the optical properties is similar 

to the ones used in previous studies15-17.The extraction of the optical properties was carried out by an 

iterative method to invert the RTE with the inversion being carried out at one wavelength at a time. For 

each wavelength, initial guess values of the bulk optical properties µa, µs and g are given as input. These 

are used to compute the albedo ( )sas µµµa +=  and optical depth (turbidity) ( lµµτ sa )⋅+= . This 

is because the adding-doubling equations are written in terms of these parameters and g. For the given 

parameters the RTE is solved using the adding-doubling method to obtain the calculated values of total 

diffuse reflectance and total diffuse transmittance which also takes into account the boundary effects 

(cuvette-sample, cuvette-air boundaries) through the use of Fresnel equations. The calculated values are 

compared with the experimental values of the three measurements and the process is repeated by 

suitably updating the guess-values of the parameters until convergence is reached. This inversion step 

was carried out using nonlinear constrained optimization (MATLAB® ‘fmincon’ optimizer). The length 

of the error vector was chosen as the objective function to minimize: 

( ) ( )22 ˆˆ
dddd RRTTf −+−=          (7) 

dT̂  and  are estimates of total diffuse transmittance and reflectance at a specific wavelength. In 

previous work where the adding-doubling method was used to estimate the bulk optical properties

dR̂

15,16, 

the objective function for minimization had an extra term  within the square root in (7) i.e. it 2)ˆ( cc TT −
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also utilized the error in the calculated value of Tc compared to the experimental values. In the present 

study, it was found that instead of directly using collimated transmittance in the objective function, the 

inversion was more stable if the measured optical depth τ  (which is just –ln(Tc)) was used as a 

constraint. If τ was measured accurately we could use it as an equality (hard) constraint which would 

speed up the optimization. However, at higher turbidity the mismatch between the measured and the 

actual τ became significant due to the fact that the light collected in the collimated transmittance mode 

begins to be “contaminated” with light that has undergone scattering mainly due to the amount of 

forward scattered light becoming significant at higher concentrations.  In this case a soft constraint 

(upper bound < τ < lower bound) works better. It was found that for the lowest concentrations 0.1% and 

0.5% by weight, the equality constraint was adequate because the theoretical turbidity matched well 

with the measured turbidity. At higher concentrations, because of the increasing mismatch, soft 

constraints were used.  

The other inputs/constants to the adding-doubling routine are: the pathlength of cuvette and refractive 

indices of air, cuvette glass and sample. The refractive indices are needed to compute reflections at the 

interfaces using Fresnel equations. A 1 mm pathlength cuvette made out of special optical glass 

(100.099-OS, Hellma) was used in the study. The refractive index of the cuvette for the required 

wavelength region was provided by the manufacturer (Hellma). The refractive index of polystyrene was 

taken from Velazco-Roa and Thennadil.17 However, the values were available only up to 1400 nm. 

Therefore, the values at higher wavelengths were obtained by extrapolation using the model given by 

the Cauchy dispersion formula18: 

( ) 42 λλ
λ CBAn ++=           (8) 

The refractive index of water was taken from Segelstein19
 and the refractive index of the sample was 

calculated as a sum of refractive indexes of water and polystyrene multiplied by their respective weight 

fractions. The refractive index of air was taken as equal to one across the entire wavelength region. 
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Calibration. Multivariate calibration was carried out using PLS regression. For the simulated data, the 

same model building and latent variable selection procedures used in [9] were carried out. For the 

experimental data, accuracy of predictions was evaluated using root mean square error of cross 

validation (RMSECV). Cross validation was carried out using the ‘leave-one-out’ method. Further, for 

the experimental data, all the raw spectra were smoothed using a Savitsky-Golay filter with window 

width 9 and order 3 to remove noise in the measurements. The computations were carried out using 

Matlab® and the PLS models were built using PLS_Toolbox by Eigenvectors Research Inc.   

 

RESULTS AND DISCUSSION 

SIMULATION 

The simulated spectra of total diffuse transmittance and total diffuse reflectance and the 

corresponding bulk absorption coefficient for the turbid system toluene-polystyrene-water-heavy water 

are shown in figure 3. All graphs are provided in the same scale so that the magnitudes of variation in 

each case can be visually compared. It can be seen that (baseline) variation in µa is much smaller than in 

the two direct measurements: approximately five times smaller than in diffuse transmittance and four 

times smaller than in diffuse reflectance. Variation in Td and Rd measurements is due to changes in both 

chemical and physical properties of the sample, whereas variation in µa is predominantly due to changes 

in chemical information (concentrations). It is apparent from this comparison that the variation in the 

pathlength travelled by photons, which is subject to number, size and shape of particles is the main 

contributor to the variation in spectroscopic measurements of a turbid sample. Not only is the magnitude 

of variation due to changes in physical properties much larger than due to changes in concentrations, but 

it is also nonlinear, which makes it a serious problem for the linear multivariate calibration. 

Table 1 summarizes the results of the PLS calibration performances using reflectance and 

transmittance data compared with results obtained when the bulk absorption coefficients µa are used to 

predict the concentration of the scattering species (polystyrene) in the simulated 4 component system. 

For the case where diffuse reflectance spectra were used for building calibrations, it was found that pre-
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processing by any of the techniques considered in [9] did not improve performance. The EMSCL 

(Extended Multiplicative Scatter Correction with wavelength dependent log term) method which was 

found in [9] to be the best performing scatter correction technique for predicting the concentrations of 

non-scattering species, in the present case, needed fewer number of  latent variables (LVs) and therefore 

is reported. When diffuse transmission measurements were used pre-processing with EMSCL provided 

a slight improvement. 

From Table 1, it is seen PLS models built on µa for estimation of concentration of scattering 

component yielded much better prediction results than those built on diffuse reflectance spectra or 

diffuse transmittance spectra, the latter exhibiting the worst performance. The RMSEP value obtained 

by using µa was more than 1.7 times lower than that obtained using diffuse reflectance and was 

achieved with half the number of LVs.  

There are two points to be noted in Table 1. Firstly, even for the theoretical situation, the prediction 

error in particle concentration when using µa, while better than using reflectance spectra coupled with 

pre-processing, is appreciable. Secondly, since there are only 4 components in the system, taking 

closure condition into consideration, if scattering effects were completely eliminated, we would have 

needed only 3 latent variables in the model. Instead the best model needs 6 LVs. Figure 4 shows a plot 

of actual vs. predicted concentration of polystyrene using the model based on µa. It can be seen that the 

accuracy of predictions drops with the increasing concentration of particles.  

These observations could be explained by the insight provided by taking a closer look at the bulk 

absorption coefficient given by (4). Although µa is free from nonlinear photon pathlength variations, it 

still has some variation not related to chemical information. The information about the concentration of 

the scattering component is contained in the term µap = σapcp in (4). It is the only problematic term in µa 

from the point of view of multivariate calibration, because it varies not only with volumetric 

concentration of particles but also with their morphology (size and shape). 

To examine this term further, for spherical particles it can be rewritten as: 
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Vp is the volume of a single particle (cm3), cp is the concentration of particles expressed as number 

density (cm-3), #
pc  is the volumetric concentration of particles (ml/ml) and R is the particle radius. The 

term separated from is denoted as K. The parameter K is a function of particle radius both explicitly 

as well as implicitly due to σ

#
pc

ap also being a function of particle radius17. While it does not explicitly 

contain concentration information, due to its dependence on particle size, it will be correlated to the 

concentration of particles. This is because particle concentration can be changed in 3 different ways: by 

keeping the number density of the particles the same and changing their size (radius), keeping the 

particle size the same and changing the number density or by a combination of both. From (9), looking 

at the first right-hand-side relation, it can be seen that the effect due to particle number density is a 

baseline offset of the absorption cross-section of the particle, whereas the effect due to particle size is 

manifested by a wavelength dependent change in the particle absorption cross-section. When both vary 

simultaneously, the fact that the number density is implicitly related to the particle size and thus 

indirectly to the absorption cross-section and the multiplicative (confounding) effect on one another 

means that only a portion of the concentration information can be extracted from the combined effect. 

Thus variations arising from this term can have an adverse affect on model performance when the 

models are built for predicting the concentration of a particulate species (i.e. a species that both absorbs 

and scatters light). The fact that we need three extra latent variables to predict the particle concentration 

may be due to requiring extra LVs to describe the effects described above.  

Further, the accuracy of multivariate calibration models in predicting the concentration of the 

scattering component will depend on the magnitude of variation in K. Since for the same particle 

concentration, K can take on different values due to changes in particle size, it introduces an error due to 

the confounding effect arising from the multiplicative nature of this parameter with respect to the 

particle concentration. The higher the concentration of particles, the larger will be the effect on µap due 
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to variations in K. Since variations in K degrade the performance of a calibration model due to the 

confounding effect it induces, this translates into higher levels of uncertainty in the concentration 

estimates with increasing concentrations. This would explain the larger spread in the data in Figure 4 at 

higher concentrations.  

 

EXPERIMENT 

Simulation results show that a significant improvement in prediction accuracy can be achieved if PLS 

models were built on the bulk absorption coefficient rather than directly on reflectance or transmittance 

measurements, which are subject to nonlinear variations due to different pathlengths travelled by 

photons. To validate the concept, the proposed approach was applied to a simple turbid system 

comprising polystyrene particles suspended in water. The three measurements (diffuse reflectance, 

diffuse transmittance and collimated transmittance) and the extracted bulk absorption coefficient are 

presented in figure 5. As was seen with simulations, the magnitudes of variation are much larger in the 

measurements (diffuse reflectance, diffuse transmittance and collimated transmittance) than in the 

extracted µa. Again, the majority of undesirable variation occurring due to physical effects has been 

successfully removed by extracting the bulk absorption coefficient µa. 
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To check the consistency in extracted µa, its profiles for all seven concentrations for a single particle 

size (430nm diameter) were plotted (figure 6). The differences in µa of the seven samples were only due 

to changes in polystyrene concentration. If the extraction step was effectively carried out, the peak 

where polystyrene absorbs should systematically increase with the concentration of polystyrene. While 

this was true with the 100nm particles, for samples with particle sizes larger than 100nm the bulk 

absorption spectra for the lowest two concentrations of polystyrene did not fall in the right order. In 

figure 6, this can be seen for the samples with polystyrene particles of 430nm diameter. This is likely 

due to the increased losses of light in the integrating sphere setup. The adding-doubling method does 

not take into account the light lost through the sides of the cuvette. When the particle number density is 

low, the mean free path of the photons becomes high. As a result a photon that is scattered sideways has 

 



a greater probability of reaching the side walls of the cuvette since the probability of it getting scattered 

again before it reaches the wall becomes lower. Since the adding-doubling method assumes that the 

breadth of the cuvette is infinite, any loss through the side walls is manifested as absorption. When this 

effect becomes significant, the bulk absorption coefficient extracted using the adding-doubling method 

is overestimated. The reason it is evident for the larger particles is because for the same volumetric 

concentration of particles, there are much fewer number of large particles. This is due to the fact the 

number of particles is related to the cube of the particle radius when the total particle volume is kept 

constant. This explains why the absorption (µa) spectra for the lowest concentrations were shifted up 

and had higher values. To correct these offsets in µa due to light losses, EMSCL was applied. It was 

found that the application of EMSCL successfully corrected the baseline variations introduced by light 

loss from the sides of the cuvette. This is evident in figure 7 where it is seen that in the region of 

polystyrene absorption, the EMSCL corrected absorption spectra now shows an increase in µa with 

increasing concentration of polystyrene latex particles. 

Having obtained consistent estimates of bulk absorption coefficient after pre-processing with 

EMSCL, a PLS calibration model was built on the pre-processed bulk absorption spectra. For all three 

cases the EMSCL technique provided the best (or the same level of) performance and therefore only this 

case is reported for the models built on µa, Rd and Td. The RMSECV curves of calibration models which 

gave the lowest prediction errors are given in figure 8(a) and the predicted vs. actual values are shown 

in figures 8(b)-(d). The results are summarized in table 3.  

The system considered here consisted of two components. Therefore, theoretically, one latent variable 

should have been sufficient to model it. However, it is apparent from the RMSECV curve of µa that 

three latent variables are needed to describe variation in it. This result agrees with the conclusion drawn 

from the analysis of simulated data that extra LVs are needed to describe the nonlinear variation in 

absorption coefficient of particles. The other important finding in the analysis of simulated data that the 
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prediction accuracy drops with increasing particle concentration is not so clear from the predicted 

versus actual values plot of experimental data (figure 8(b)). 

It is also seen that while the proposed approach considerably outperformed the model obtained from 

diffuse reflectance spectra with EMSCL applied to it, very surprisingly the models using diffuse 

transmittance performed much better than the proposed approach. From physical considerations and the 

results from simulated data with 4 components this appears to be contradictory. This apparently 

contradictory result can be explained by examining the PLS scores and loadings plots for models using 

Td, Rd and µa. 

Figures 9(a), (c) and (e) show the PLS loadings for the first three latent variables for models built 

using µa, Rd and Td, and figures 9(b), (d) and (f) show the corresponding scores of the first latent 

variable (LV1) plotted versus the particle concentrations. For all three cases, it is seen that the first LV 

is essentially modelling the water absorbance. While the wavelength region considered (1600-1848nm) 

contains the first overtones of O-H stretching, bending and libration vibrations of water at around 

1790nm and the peak due to O-H stretching and bending vibrations at around1900nm20 (of which only 

the tail part below 1848nm is included here), the region below the 1790nm peak has non-zero 

absorbance even though it is relatively a flat and featureless baseline. This “baseline” absorption will 

increase or decrease with changes in the concentration of water. It is this part of the spectrum that 

appears to be modelled by this LV.  The second LV contains the first overtone peak due to the C-H 

stretching vibrations of polystyrene which occurs around 1680nm. For the models using Rd and Td, 

there is a significant correlation between the scores of the first LV and the particle concentrations. The 

correlation is the strongest for Td. For µa this correlation is very weak and it could be argued that it is 

almost insignificant. Thus, models using Rd and Td benefit from the correlation of particle concentration 

with the water absorption in the first LV whereas this secondary correlation which is due to the use of a 

two-component system is not available for the model using µa. In a two component system, the 

concentrations of the two components are inversely correlated due to the closure condition. Therefore, if 

the first LV was representing water absorption, then the scores of the first LV should have shown a 
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negative correlation with the water absorption because increasing the concentration of particles would 

result in the decrease of water concentration (due to volume displacement). However, it is seen that the 

correlation is positive. This positive correlation can be explained if we consider pathlength variations 

occurring due to changes in the particle concentrations. When the particle concentration increases, 

multiple scattering increases which in turn increases the pathlength travelled by the photons. This 

increase in pathlength means that the photons will travel longer distances through the medium (which is 

predominantly water) resulting in the absorption due to water increasing with increasing particle 

concentrations and thereby leading to a positive correlation of particle concentration with water 

absorption which is represented by the first LV. The fact that the volume displacement effect which 

would have manifested as a negative correlation is not evident indicates that this effect is much smaller 

than the effect due to pathlength variation which generates a positive correlation. It appears that this 

effect is largest in the diffuse transmittance measurements and to a lesser degree in diffuse reflectance 

measurements for the range of concentrations considered in this study. Naturally, in the case where the 

extracted bulk absorption spectra µa are used for building the PLS model, since the pathlength effect is 

removed by applying the RTE, this secondary correlation is mostly eliminated. As a result, the scores of 

LV1 show almost no correlation with the particle concentrations.  

From this discussion it can be concluded that the model built using µa is almost fully based on the 

actual polystyrene signal whereas those built on the direct measurements have a significant contribution 

from the pathlength effect which only for a two-component system gives rise to additional correlation 

with the particle concentrations and which in turn leads to an apparent advantage. It should be noted 

that even with this advantage the model based on Rd does not outperform the proposed approach 

probably due to the fact that the pathlength correlation is not as strong as is the case with Td. The 

analysis presented shows that the extraction algorithm using the RTE to obtain the bulk absorption 

spectra is successful in effectively removing pathlength variations and providing essentially a 

pathlength normalised absorption spectra. The discussion presented here also suggests that the models 

based on the direct measurements will lead to much larger errors when applied to a multi-component 
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system where the secondary correlation will not exist. On the other hand, a model based on µa can be 

expected to have lesser deterioration when applied to multiple component systems provided the bulk 

absorption spectra could be extracted with similar levels of accuracy as in the present study. 

In the current study, the methodology was applied to develop models for estimating the concentration 

of a particulate species that both absorbs and scatters light. It is common to find situations where the 

species of interest is purely absorbing and is dissolved in a matrix containing a mixture of absorbing and 

scattering components e.g. glucose in blood. Another case of interest is when the species of interest 

(purely absorbing) is adsorbed on the surface of scattering particles. This methodology is applicable to 

such cases too. From the point of removing multiple scattering effects through the extraction of µa, the 

procedure is unaffected by which of the three cases is being considered. The difference in each of the 

cases is how the species of interest contributes to µa and thus affect the calibration model built using 

this extracted property.  

In theory, situations where the species of interest is purely absorbing and dissolved in a medium 

containing scatterers represent a comparatively simpler problem. Examining (4), if for example the 

purely absorbing species of interest is component 1, then the term varies only with 

concentration of species 1 as there is no particle size contribution to the absorptivity . The effect of 

particle size only occurs indirectly through the term representing the particulate species which is an 

additive term. When the (purely absorbing) species of interest is adsorbed on the particle, the situation 

could be expected to be slightly more complicated since the adsorbed species will modify the value of 

absorption cross-section  of the particle, the extent of which will depend on level of adsorption of 

the species. As a result, the number of latent variables required may be more than that indicated by the 

additive relationship given by (4). 

11, cσa ⋅

1,aσ

apσ

 

CONCLUSIONS 
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The theoretical study using a simulated dataset containing 4 components with calibration models built 

for the case where the species of interest is a particle indicated that appreciable improvements in model 

 



performance can be obtained when the proposed methodology is used compared to applying empirical 

scatter correction techniques to single measurements. For real systems, the ability to extract µa 

consistently and with sufficient accuracy is key to fully realising the potential of this methodology. This 

in turn requires an accurate method for solving the RTE. In the current study, the adding-doubling (AD) 

method was used for this purpose. The methodology with the adding-doubling method as the engine for 

solving the RTE was tested with experimental data for a simple two-component (polystyrene-water) 

system. It was found system used in this study, the AD method introduced systematic errors in µa due to 

light losses resulting from the finite width of the sample. To remove those errors additional pre-

processing was required. Despite this drawback of the AD method, analysis indicates that the pathlength 

variations are effectively removed. It may be possible to obtain further improvements to this approach 

by minimising light loses by adjusting sample width and thickness.  

The application of the methodology described here led to a model that performed better than that built 

using diffuse reflectance measurements. However its performance was worse compared to when diffuse 

transmittance measurements were used to build a model. Analysis indicates that this is due to the 

secondary correlation between particle concentration and pathlength travelled by the photons which 

occurs due to the system containing only two components. This secondary correlation will not be 

available in multi-component systems and therefore it can be argued that the performance of models 

built using Td or Rd would show significant degradation compared to using µa.  
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Figure 1. a.) Homogeneous sample (e.g. liquid mixture), absorption only;  b.) Turbid sample with very 

low concentration of scatterers (particles) – absorption + single scattering;  c.) Turbid sample with a 

high concentration of scatterers - absorption + multiple scattering. 

 

27

 



 

 

 

 

 

Figure 2. Flowchart illustrating the methodology used in this study for correcting multiple scattering 

effects and building calibration models. 
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Figure 4. Predicted versus actual values of concentration of scattering component (polystyrene) for 

training and validation data sets (Simulations). 
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Figure 5. Experimental polystyrene-water data set: Collimated transmittance, total diffuse transmittance, 

total diffuse reflectance and bulk absorption coefficient µa. 
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Figure 6. µa profiles of different concentrations for 430nm diameter polystyrene particles:  

0.1%wt.,  0.5%wt.,  0.9%wt.,  1.23%wt.,  1.6%wt.,  1.95%wt.,  

2.3%wt. 
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Figure 7. µa profiles of different concentrations after EMSCL:  0.1%wt.,  0.5%wt.,  

0.9%wt.,  1.23%wt.,  1.6%wt.,  1.95%wt.,  2.3%wt. 
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Figure 8. (a) RMSECV curves of different PLS calibration models built using:  Rd pre-processed 

with EMSCL,  Td pre-processed with EMSCL,  µa using EMSCL. Predicted concentration of 

polystyrene versus actual using: (b) Rd +EMSCL, (c) µa +EMSCL and (d) Td + EMSCL. 

 



 

1600 1640 1680 1720 1760 1800 1840
-1

-0.5

0

0.5

1

Wavelength, nm

L
oa

di
ng

(a)

5.4 5.6 5.8 6 6.2

x 10 -3

0

0.5

1

1.5

2

2.5

Scores on LV1

Po
ly

st
yr

en
e,

 %
 w

t.

(b)

 
 
 

1600 1640 1680 1720 1760 1800 1840
-0.4

-0.2

0

0.2

0.4

Wavelength, nm

L
oa

di
ng

(c)

9.88 9.89 9.9 9.91 9.92 9.93 9.94

x 10 -4

0

0.5

1

1.5

2

2.5

Scores on LV1

Po
ly

st
yr

en
e,

 %
 w

t.

(d)

 
 

1600 1640 1680 1720 1760 1800 1840
-0.4

-0.2

0

0.2

0.4

0.6

Wavelength, nm

L
oa

di
ng

(e)

7.8 7.85 7.9 7.95 8 8.05

x 10 -4

0

0.5

1

1.5

2

2.5

Scores on LV1

Po
ly

st
yr

en
e,

 %
 w

t.

(f)

 
Figure 9. (a), (c) and (e) – Loadings of the first 3 LVs from PLS models obtained using µa, Rd and Td 

respectively. Solid line LV1, -- LV2 and — – LV3. (b), (d) and (e) – Scores of LV1 vs. Particle 

concentrations for the PLS models obtained using µa, Rd and Td respectively. 
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Table 1. Performance of calibration models for estimating polystyrene concentration in the simulated 

data-set of a four-component system. 

Predictions of concentration of scattering component (polystyrene) 
Calibration Test  Preprocessing LVs RMSECV (g/l) RMSEP (g/l)

Calibration models built 
on diffuse reflectance EMSCL 12 2.17 2.5 

Calibration models built 
on diffuse transmittance EMSCL 8 4.04 3.14 

Calibration model built 
on µa

None 6 1.38 1.42 
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Table 2. Performance of calibration models for estimating polystyrene concentration in the experimental 

data-set of a two-component (polystyrene-water) system. 

Model Preprocessing LVs RMSECV 

Calibration models built on total diffuse reflectance 
1 EMSCL 2 0.37 
Calibration models built on total diffuse transmittance 
2 EMSCL 4 0.09 

 Calibration model built on µa 

3 EMSCL 3 0.23 
 

 

37

 


