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Av. Rovisco Pais, P-1049–001 Lisboa, Portugal

Abstract

In this paper we consider a boundary value problem for a quasilinear pendulum equation

with nonlinear boundary conditions that arises in a classical liquid crystals setup, the Freed-

ericksz transition, which is the simplest opto-electronic switch, the result of competition

between reorienting effects of an applied electric field and the anchoring to the bounding

surfaces. A change of variables transforms the problem into the equation xττ = −f(x) for
τ ∈ (−T, T ), with boundary conditions xτ = ± β

T f(x) at τ = ∓T, for a convex nonlin-

earity f. By analyzing an associated inviscid Burgers’ equation, we prove uniqueness of

monotone solutions in the original nonlinear boundary value problem.

This result has been for many years conjectured in the liquid crystals literature, e. g.

in E. G. Virga, Variational Theories for Liquid Crystals,Chapman & Hall, London, 1994

and in I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A

Mathematical Introduction, Taylor & Francis, London, 2003.

Key words: Freedericksz transition, Burgers’ equation, convexity, nonlinear boundary

value problems, uniqueness of solutions

1991 MSC: 34B18, 34C23, 35F25, 76A15

PACS: 61.30Hn, 64.70.Md

1 Partially supported by FCT (Portugal) through project PDCT/MAT/56476/2004
2 Partially supported by FCT (Portugal)

Preprint submitted to Elsevier 14 January 2009



1 Introduction

In the liquid crystalline phase of matter, molecular self-organisation produces ori-

entational order where the rod or disc-like molecules preferentially align approx-

imately parallel to each other [5]. The orientational order within the liquid crys-

tal allows us to define an anisotropic axis, the axis of rotational symmetry. This

anisotropic axis, the average molecular direction at that point in the material, is a

macroscopic variable, called the director n (a unit vector), and may vary in space

(and change with time) to create director distortion structures which increase the

stored elastic energy of the system. The organic molecules that form the liquid crys-

tal material may contain aromatic ring structures which allow a magnetisation to be

induced when placed in an external magnetic field. The director can therefore be

influenced by the application of such a magnetic field or, through electrostatic or

steric interactions, may be influenced by the presence of a bounding surface.

The birefringence of a liquid crystal material and the ability to alter that birefrin-

gence through an applied field are factors that enable liquid crystals to be used in

a display system. It is the versatility, portability and space saving aspects of these

liquid crystal displays (LCDs) that mean that they are now ubiquitous in modern

life.

The competing influences of the orienting effect at the bounding surfaces and the

applied magnetic (or electric) field in the bulk of the liquid crystal which can pro-

duce a sharp transition between two alternative molecular configurations (the “on”

and “off” states in a LCD). The Freedericksz Transition is a classic phenomenon in

liquid crystal physics that demonstrates this competition between surface and bulk

effects [6]. The facts that the vast majority of liquid crystal displays in the world

today use a similar balance of surface and bulk effects, and that the Freedericksz

transition is such a simple experimental system mean that it is still used and studied

seventy years after it was discovered.

The Freedericksz cell consists of a layer of liquid crystal material sandwiched be-

tween two planar substrates (see Fig. 1). On the inner surfaces of the two substrates

(the sides closest to the liquid crystal) polymer alignment layers have been de-

posited. These polymer alignment layers induce an orientational effect on the liq-

uid crystal molecules close to the substrates by introducing an alignment direction

along which the director would prefer to lie. With a low magnetic field the director

is governed by alignment layers (see Fig. 1(a)) but as the magnetic field strength

increases past a critical value a distorted state is energetically favoured and the

director attempts to align with the magnetic field direction.

In terms of a theoretical model of the system it is usually assumed that the equilib-

rium director structure is determined by the minimisation of the total free energy

of the liquid crystal. The free energy consists of contributions from the elasticity
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Fig. 1. The Freedericks cell: (a) With an applied magnetic field below the first critical value,

H < H0, the liquid crystal director is governed by the preferred alignment layer direction

(the x direction). (b) With an applied field H0 < H < H1, the director attempts to reorient

to align with the field direction. (c) With an field strength greater than the second critical

value, H > H1, the director reorients throughout the layer to align with the field direction.

of director distortions within the layer, the interaction between the director and the

magnetic field and the interaction between the director and the surface alignment

layers. This standard modelling approach is well documented and can be found in

textbooks such as [5] and [15].

The concept of weak anchoring was theoretically introduced by Rapini and Pa-

poular [11] who suggested a simple energy for the surface alignment/director inter-

action. In their model, the director is not rigidly anchored to lie in one direction at

the surfaces but allowed to deviate from the preferred direction if, for instance, an

alternative influence such as a magnetic field forces the director in a different direc-

tion. However, this deviation from the preferred alignment direction would produce

an increase in energy and this would have to be balanced with the competing influ-

ence of the magnetic field. In this situation there are then two critical magnetic field

strengths. The first H = H0 is the field strength below which there is no distortion

and the director aligns, throughout the layer, with the preferred alignment direction

(see Fig. 1(a)). Above the second critical field strength H = H1 the anchoring of

the director at the surface breaks and the director fully aligns with the magnetic

field (see Fig. 1(c)). Between these two critical field strengths the director attempts

to align with the magnetic field direction in the bulk of the layer but close to the

surfaces it attempts to align with alignment direction (see Fig. 1(b)).

The Freedericksz transition with weak anchoring has been considered by a number

of authors in various geometries and the critical magnetic field strength for a tran-

sition from an undistorted state to a distorted state (H = H0) was calculated by

Nehring et al. [9]. In [17], the author proves that there is a (pitchfork) bifurcation

from the constant solution θ = 0 at H = H0, a bifurcation from the constant so-

lution θ = π/2 at H1 and conjectures the uniqueness of the nontrivial solution in

(H0, H1). In this paper we prove that this conjecture is indeed correct.

The free energy of the system is discussed in, for instance, [15]. Our starting point
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is the free energy functional

F (θ) =
∫ d

−d

[

k(θ)θ2
z + h(θ)

]

dz + τ0ω[sin2(θ(−d)) + sin2(θ(d))], (1.1)

where θ(z) is the angle between the director and the x-axis, z is the spatial coordi-

nate perpendicular to the liquid crystal layer (see Fig. 1) and d is the thickness of

the liquid crystal layer.

In eq. (1.1) we have used the shorthand notation,

k(θ) = k1 cos2 θ + k3 sin2 θ and h(θ) = −1

2
χaH

2 sin2 θ, (1.2)

where k1, k3 are elastic constants, χa is the magnetic susceptibility of the liq-

uid crystal material, H is the magnitude of the magnetic field strength, τ0 is the

anchoring strength and ω determines whether the alignment layer prefers for the

director to be parallel or perpendicular to the alignment direction. The constants

d, τ0, ω, k1, k3, χa, H are all positive.

A simple computation shows that the Euler–Lagrange equation corresponding to

this free energy functional is

2
√

k(θ)
(

θz

√

k(θ)
)

z
− h′(θ) = 0, for z ∈ (−d, d) (1.3)

with the (natural) boundary conditions

2k(θ)θ′ = τoω sin 2θ, at z = −d,

2k(θ)θ′ = −τoω sin 2θ, at z = d.
(1.4)

In order to determine the uniqueness of a nontrivial solution to the Euler–Lagrange

equations, and associated boundary conditions, we need to prove the following

theorem, conjectured, for example, in [17]:

Theorem 1.1 For any given values of the constants χa, k1, k3, τ0, ω there is an

interval of values of H , (H0, H1), such that for H ≤ H0 and for H ≥ H1 the only

solutions of (1.3) with the boundary conditions (1.4) and taking values in [0, π/2]
are the constant solutions θ = 0 and θ = π/2, while for all H ∈ (H0, H1) there
exists in addition a unique non-constant solution of these equations taking values

in (0, π/2).

We rewrite (1.3)-(1.4) in a more convenient form. Let Θ :=
∫ π/2
0

√

k(s)ds and set
√

k(θ)θz = 2Θ
π

xz by defining x = π
2Θ

∫ θ
0

√

k(s)ds. This function is monotone and
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we denote its inverse by G(x). Then (1.3) becomes

xzz −
π

2Θ

h′(G(x))

2
√

k(G(x))
= 0 for z ∈ (−d, d); (1.5)

and the boundary conditions (1.4) become

xz = τ0ω
sin(2G(x)

2
√

k(G(x))

π

2Θ
at z = −d, xz = −τ0ω

sin(2G(x))

2
√

k(G(x))

π

2Θ
, at z = d.

(1.6)

Note that the rest points in terms of x are the same as in terms of θ. We shall need

the following lemma.

Lemma 1.2 Let f(x) :=
sin(2G(x))
√

k(G(x))
. Then, for x ∈ (0, π/2), f ′′(x) < 0.

Proof. If k1 = k3, then f(x) =
1√
k1

sin 2x and the result follows immediately. So

let us assume that k1 6= k3. Then, by computing derivatives we obtain,

f ′(G−1(θ))
π

2Θ

√

k(θ) =
d

dθ

sin 2θ
√

k(θ)
=

2

k1 − k3

(

k(θ)2 − k1k3

)

k(θ)−3/2.

Thus,

f ′(G−1(θ)) =
2Θ

π

2

k1 − k3

(

1 − k1k3

k(θ)2

)

.

Therefore

f ′′(G−1(θ))
√

k(θ) =
2Θ

π

2

k1 − k3

d

dθ

(

1 − k1k3

k(θ)2

)

= −
(

2Θ

π

)2 4k1k3

k(θ)3
sin 2θ,

and the result follows. �

Using the function f(x) :=
sin(2G(x))
√

k(G(x))
defined in Lemma 1.2, letting

T :=
1

2
Hd

√

πχa

2Θ
, β :=

τ0ωπd

4Θ
,

and defining the change of variables z 7→ τ :=
1

2
H

√

πχa

2Θ
z, the system (1.5)–(1.6)
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becomes

xττ = −f(x), for τ ∈ (−T, T ) (1.7)

xτ =
β

T
f(x), at τ = −T (1.8)

xτ = −β

T
f(x), at τ = T (1.9)

We will show that the reason for the uniqueness in theorem 1.1 is two-fold: we need

both the concavity of the function f(x) and the special form of equation (1.7) with

the boundary conditions (1.8)-(1.9), both of which involve the same function f(x).
We need also to use information derived from the fact that our system has a first

integral.

We now briefly describe the content of the paper. The basic idea of our approach is

to perform a phase plane analysis of the first order system arising from (1.7)











xτ = y

yτ = −f(x).
(1.10)

We seek a solution of (1.10) starting on the graph of the function y = β
T
f(x), ending

on the graph of the function y = − β
T
f(x), and taking exactly 2T units of “time”

τ to complete the trajectory. Due to the symmetry of the problem with respect to

reflection on the x-axis, it is enough to obtain a solution starting at a point with

y = β
T
f(x) and taking exactly T units of “time” τ to reach the x-axis (Fig. 2).

π
2

0 x0 x

y

y = − β
T
f(x)

y = β
T
f(x)

Fig. 2. The phase plane approach to (1.7), (1.8), (1.9). The case plotted is for sufficiently

small β/T .

It is more convenient to work with the new reversed “time” t = −τ and, start-

ing on the x-axis at t = 0, try to reach the final (in the new time) curve ΛT :=
{

(x, β
T
f(x)) : x ∈ [0, π/2]

}

at time t = T . For this we need to define the isochronic
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set, that is, the subsetHT of the phase plane which consists of those points that are

attainable in T units of time, starting in the x-axis, and applying the flow generated

by










x′ = −y

y′ = f(x),

where ′ denotes the derivative with respect to t. The main result will be proved once

we conclude that the intersection between the final curve ΛT and the isochronic set

HT is either empty or a singleton, and the set of values of the magnetic fields H for

which the last case occurs is a bounded interval.

Clearly, for very large T the isochronic set HT can be a quite complicated curve.

However, we are only interested in solutions for which x is always in [0, π/2]. In
these cases, the corresponding portion of HT , which we simply call the isochrone,

is shown, by phase plane techniques, to be the graph of a function x 7→ h(x, T ),
x ∈ [0, π/2]. It is a remarkable fact that h satisfies a non-homogeneous Burgers’

equation from which the necessary t evolution of (the relevant portion of) Ht can

be obtained.

Phase plane analysis and results about isochrones will be the focus of Section

2. In Section 3 we seek to characterize the intersections between the HT and

ΛT . This will be done by analyzing the monotonicity properties of the function

z(x) := h(x, T )/f(x) by the study of the evolution of a quantity related to z′(x)
along the characteristics of the Burgers’ equation. This will complete the proof of

Theorem 1.1.

2 Phase plane analysis and properties of the isochrone

Let f : R → R be a smooth function with f(0) = f(π/2) = 0, positive and

concave in (0, π/2), with its unique maximum in this interval be located at x = a.
Consider the following boundary value problem











x′ = −y

y′ = f(x),
(2.1)

(x, y)(0) = (x0, 0), (2.2)

(x, y)(T ) ∈ ΛT . (2.3)

We are interested in solutions (x, y) to (2.1)–(2.3) that lie in [0, π/2] × R. Since

system (2.1) has the first integral

W (x, y) =
1

2
y2 + F (x), (2.4)
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where F (x) =
∫ x
0 f(s)ds, the orbits in the phase plane of our system are thus level

sets of the energy W , and we immediately conclude that the region of the phase

plane of interest to our present study is the closed bounded set Ω whose boundary

is made up of segments of the coordinate positive semi-axis and of the non-constant

orbit γπ/2 of (2.1) whose α-limit set is the equilibrium {(π/2, 0)} (see Fig. 3).

π
2

0 x̄0x0x x

y

H+
T γπ/2

Ω

ȳ

¯̄y

Fig. 3. The situation when H+
T is not a graph of a function x 7→ h(x, T ).

Denoting by ϕt the flow generated by (2.1), let

H+
T :=

{

(x, y) = ϕT (x0, 0) : x0 ∈ [0, π/2], and ϕt(x0, 0) ∈ Ω, ∀ t ∈ [0, T ]
}

be the subset of HT corresponding to solutions that never leave Ω before time

t = T . We start by showing the following:

Lemma 2.1 There exists a smooth function h : (0, π/2)× [0, +∞) → R such that,

for each fixed T ≥ 0, H+
T is the graph of a map x 7→ h(x, T ).

Proof. For each (t, x0) ∈ R× (0, π/2), let us write (x(t, x0), y(t, x0)) := ϕt(x0, 0).
By standard ODE theory, this solution exists for all real t, is unique and its depen-

dence with respect to (t, x0) is smooth. For each T ≥ 0, define IT as the subset of

(0, π/2) of all initial conditions x0 for which ∀t∈[0,T ], x(t, x0) ∈ (0, π/2). Suppose
that we have proved that,

∀x0∈IT
,

∂x

∂x0
(T, x0) > 0. (2.5)

Then, the map x0 7→ x(T, x0) that takes IT onto (0, π/2) has a smooth inverse

x 7→ x0(T, x). In this situation, we can define a smooth function h : (0, π/2) ×
[0, +∞) → R by

h(x, T ) := y(T, x0(T, x)) .

Suppose that ȳ = h(x̄, T ). Then, by definition, ϕT (x0(T, x̄), 0) = (x̄, ȳ), thus
proving that (x̄, ȳ) ∈ H+

T . Conversely, let (x̄, ȳ) ∈ H+
T . Then, (x̄, ȳ) = ϕT (x̄0, 0)

for some x̄0 ∈ IT . Therefore, by definition, x̄0 = x0(T, x̄) and ȳ = y(T, x0(T, x)),
thus proving that ȳ = h(x̄, T ) and our claim is proved.
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Therefore, it remains to prove (2.5). The direct tackling of this question runs into

problems due to the fact that the linear variational equation solved by ∂x
∂x0

involves

differences whose signs are hard to handle. To overcome this difficulty, let us intro-

duce the new variable σ(t, x0) := x(t,x0)
x0

, for each t ∈ [0, T ] and x0 ∈ IT . Note that
σ(t, x0) ∈ [0, 1]. Then, by (2.1)-(2.2),

∂σ(t, x0)

∂t
= −y(t, x0)

x0

, σ(0, x0) = 1.

By using the non-negativity of y(t, x0) and the invariance of (2.4) for each fixed x0,

we obtain after computing derivatives,

y
∂

∂t

∂σ

∂x0
= −y

∂

∂x0

√

2F (x0) − 2F (σ(t, x0)x0)

x0

=
G(x0) − G(σx0)

x2
0

+ f(σx0)
∂σ

∂x0

,

(2.6)

where, G(u) := 2F (u) − uf(u). Since G′′(u) = −uf ′′(u) > 0 for u ∈ (0, π/2)
by Lemma 1.2 and G′(0) = 0, it follows that G′(u) > 0, for all u ∈ (0, π/2) and
therefore, for t ∈ (0, T ],

G(x0) − G(σx0)

x2
0

> 0. (2.7)

For fixed x0, let us write u(t) := ∂σ
∂x0

(t, x0). Then, obviously, u(0) = 0. The
differential equation (2.6) together with this initial condition defines a Cauchy

problem which is singular at t = 0, since y(0, x0) = 0. However, smooth de-

pendence of (x(t, x0), y(t, x0)) with respect to (t, x0) allows us to compute also

u′(0) = − ∂y
∂x0

(0, x0) = 0, and, therefore, u′′(0) = limt↓0
u′(t)

t
= limt↓0

2u(t)
t2

. But

since

lim
t↓0

f(σ(t)x0)u(t)

ty(t)
= f(x0) lim

t↓0

t

y(t)
lim
t↓0

u(t)

t2
= lim

t↓0

u(t)

t2
=

u′′(0)

2
,

by dividing both terms of the right-hand side of (2.6) by ty(t) and taking limits as

t ↓ 0, we obtain

u′′(0) =
2

x2
0

lim
t↓0

G(x0) − G(σ(t)x0)

ty(t)
=

G′(x0)

x2
0

> 0.

Therefore, there is τ ∈ (0, T ] such that if 0 < t < τ then u(t) > 0. Suppose now
that there is some t1 ∈ [τ, T ] such that u(t) > 0, for all t ∈ (0, t1) and u(t1) = 0.
Then, again by (2.6), u′(t1) > 0 which is absurd. We have proved that, for all

t ∈ (0, T ], u(t) > 0.

But since ∂x/∂x0 = x0u + σ, this also proves that ∂x(t, x0)/∂x0 > 0, for all
(t, x0) ∈ (0, T ] × IT , and the proof is complete. �
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The following two lemmas allow us to reduce our bifurcation problem to the study

of a Cauchy problem defined by a well-known first order PDE and use character-

istics to derive equations which will be crucial in the uniqueness result of the next

section.

Lemma 2.2 Let (x, t) 7→ h(x, t) be the function whose graph, for fixed t is the
t-isochroneH+

t . Then, h satisfies the non-homogeneous inviscid Burgers’ equation

ht − hhx = f(x). (2.8)

Proof. By definition of the isochrone, y(t) − h(x(t), t) = 0 holds for all values of

t for which the orbit (x(t), y(t)) is in Ω. Applying the chain rule to this identit and

using (2.1), we have

f(x) = y′ =
d

dt
h(x, t) = ht + hxx

′ = ht − hhx,

as we wanted to prove. �

Lemma 2.3 Let h be a solution of the non-homogeneous Burgers’ equation (2.8).

Then, along characteristics of (2.8) the following hold true:

d

dt
h = f(x) (2.9)

d

dt
ht = hxht (2.10)

d

dt
hx = h2

x + f ′(x) (2.11)

Proof. By Lemma 2.1, h is smooth, and by Lemma 2.2, it satisfies equation (2.8).

By the method of characteristics applied to (2.8), we immediately obtain the char-

acteristic equations
d

dt
x = −h

d

dt
h = f(x).

Differentiating (2.8) with respect to t and to x, and using the characteristic equation
for x we obtain equations (2.10) and (2.11), respectively. �

Remark 1 It is interesting to observe the following: differentiating (2.8) twice with

respect to x and using the characteristic equation for x we obtain

d

dt
hxx = 3hxhxx + f ′′(x).

Integrating this equation and using the concavity of f proved in Lemma 1.2 imme-

diately gives the concavity of the isochrone.
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3 Application to the weak Freedericksz transition

Lemma 3.1 For every T > 0, the intersection of H+
T and ΛT is either empty or a

single point.

Proof. Now we prove that for each T > 0 and α > 0, the intersection between the

graphs of h(·, T ) and αf , in the interval (0, π/2) is either the empty set or a single

point. Define, for each x ∈ (0, π/2)

z(x) :=
h(x, T )

f(x)
.

For the value of T that we have fixed and for each particular x∗, z(x∗) gives the
unique value of α for which the above curves intersect at x = x∗. This function is

well defined since f(x) > 0, for x ∈ (0, π/2). Now, if our claim were false, z(x)
would not be monotone. We now prove that this is impossible and, in fact, that z is

strictly decreasing. By taking derivatives, at a particular x̄ ∈ (0, π/2), we have

z′(x̄) =
hx(x̄, T )f(x̄) − h(x̄, T )f ′(x̄)

f(x̄)2
.

Consider the projected characteristic t 7→ x(t) such that x(T ) = x̄. Let us define,
for t ∈ [0, T ],

H(t) := hx(x(t), t)f(x(t)) − h(x(t), t)f ′(x(t)) .

Obviously,H(0) = 0, since h(x, 0) ≡ 0. Then, by taking into account the evolution
of h and hx along the characteristics of (2.8), given by equations (2.9) and (2.11),

we conclude that

d

dt
H = hx

d

dt
f + f

d

dt
hx − h

d

dt
f ′ − f ′ d

dt
h

= −hxhf ′ + f(f ′ + h2
x) + h2f ′′ − f ′f

= hx(hxf − hf ′) + h2f ′′

Then H satisfies the following linear Cauchy problem:

d

dt
H − hx(x(t), t)H = h2f ′′ , H(0) = 0 .

Keeping the notation h, hx for their evaluations at (x(t), t), by the variation of con-
stants formula, we conclude that

H(T ) =
∫ T

0
e−
∫

T

t
hxh2f ′′ dt < 0 .
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But this proves that

hx(x̄, T )f(x̄) − h(x̄, T )f ′(x̄) < 0,

and therefore, z′(x̄) < 0, concluding our proof. �

Proof (of Theorem 1.1). Let χa, k1, k3, τ0 and ω be fixed positive constants. Then

β = τ0ωπd
4Θ

is fixed and T ∝ H . For all values of H , the constant functions θ = 0
and θ = π/2 are solutions to (1.3)-(1.4). By Lemma 3.1 we have that, for each

value of H , the problem (1.3)-(1.4) has at most one further (nonconstant) solution

taking values in [0, π/2].

It remains to be proved that the set of values of H for which such a nonconstant

solution exists is a bounded interval. This can be achieved by applying the relevant

results in [17]. However, since the argument is simple and rather brief once the

behaviour of h has been studied, we choose, for completeness’ sake, to include it

here.

We start by noting that neither in the case T → 0 nor if T → +∞ does a solution

to Th(x, T ) = βf(x) exist in (0, π/2). This is so by continuity and because the

left hand-side is zero if T = 0 whereas it is pointwise convergent to infinity when

T → +∞. Of course the right hand side is positive, bounded, and independent

of T. So, there exists T0 < T1 such that, for either T < T0 or T > T1 it is true

that H+
T ∩ ΛT = ∅. Suppose the set of values of T for which this intersection

is not empty is not an interval. Then, there would exist T ′ < T < T ′′ such that

H+
T ∩ΛT = ∅ and the intersections for the values of T ′ and T ′′ are non-empty. But

this is impossible by continuity, and by the properties of h and f studied previously:

if the intersection is empty at T > T ′ , then, for each x ∈ (0, π/2), Th(x, T ) must

be above βf(x), and thus for all T ′′ > T is must remain above.

θ
π
2

0 HH0 H1

Fig. 4. Bifurcation diagram for the solutions of (1.2)-(1.4) with θ taking values in
[

0, π
2

]

(Freedericksz transition with weak anchoring).

So, reverting to the original variables θ andH , we can draw the bifurcation diagram

of Figure 4, and thus the statement of Theorem 1.1 has been proved. �
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4 Remarks

One could prove the same result using the time-map methods of Schaaf [12] and

working with elliptic integrals [10]. The method we have chosen here seems to us

more transparent. The connection between isochrones in second order ODEs and

the Burgers’ equation certainly can be exploited in other contexts. For example, it

seems to us possible, by using ray tracing methods, to recover the classical result of

Smoller andWasserman [13]. Note that in the application here the shock propagated

away from the area of interest; this is not the case in the Smoller and Wasserman

context and multivalued “solutions” of Burgers’ equation have to be considered

then.

The connection between the Burgers’ equation with source, (2.8) satisfied by h(x, t)
and the Hamilton-Jacobi equation associated with the Hamiltonian (2.4) has been

observed by J. Robbins (private communication) and by an anonymous referee.

Indeed, if S(x, t) satisfies the Hamilton-Jacobi equation

St = W (Sx, x)

with the initial condition S(x, 0) = const, differentiating the Hamilton–Jacobi with

respect to x shows that h(x, t) = Sx(x, t). An (implicit) interpretation of Sx as

an isochrone curve can be found in, for example, [7, Theorem 13.10], but to the

best of our knowledge, the present paper is the first application of these ideas to

multiplicity questions in boundary value problems.

It is worth commenting on the importance of uniqueness of solutions in such liq-

uid crystal systems. The Freedericksz transition is often used as both a simple test

experiment for new liquid crystals or alignment layers. It is also used extensively

in the measurement of certain material parameters (k1, k3 and τ0) and as such the

comparison between experimental and theoretical results is crucial to the develop-

ment of new liquid crystal materials. In particular the elastic constant k3 is mea-

sured using information from the non-trivial solution. Because the exact form of

this solution cannot be directly experimentally measured it is essential that we have

confidence that the observed effect is the same as the theoretical solution it is being

compared to. This result therefore gives complete reassurance that the experimen-

tally measured solution can be compared with the theoretical model and that the

measurements of k3 are unambiguous.

Possible extensions of this result are numerous. There are three classical geometries

for the Freedericksz transition, the splay (considered here), bend and twist transi-

tions [5]. Relatively simple symmetry operations (in the case of the bend transition)

or a simplification of our result here (twist transition) mean that this uniqueness re-

sult is true for all three cases. It would be interesting to extend this analysis to more

complicated situations such as the transition of a twisted nematic cell with weak

anchoring, where there are two couple equations and two types of weak anchoring

13



to consider.

It should also be possible to extend the present analysis to more complicate forms

of the surface energy [8,14,18,1–3]. The physically correct form of this energy

term has been disputed for some time and it would be very interesting to see if this

type of uniqueness proof could be applied to systems with other forms of surface

energy. Again this is important in providing confidence in various experimental

measurements. Other approximate surface energies, for particularly complicated

substrates, have recently been proposed that make the system bistable [4,16]. An

investigation of uniqueness in these systems would be extremely interesting as it

could have applications to a number of bistable liquid crystal display technologies.
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