Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion method

Orr, Leigh-Ann and Mulholland, Anthony J. and O'Leary, Richard L. and Hayward, Gordon (2008) Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion method. Ultrasonics, 48 (8). pp. 652-663. ISSN 0041-624X

[img]
Preview
Text (strathprints013688)
strathprints013688.pdf
Accepted Author Manuscript

Download (178kB) | Preview

Abstract

Periodic composite ultrasonic transducers oer many advantages but the periodic pillar architecture can give rise to unwanted modes of vibration which interfere with the piston like motion of the fundamental thickness mode. In this paper, viscoelastic loss is incorporated into a three dimensional plane wave expansion model (PWE) of these transducers. A comparison with experimental and nite element data is conducted and a design to damp out these lateral modes is investigated. Scaling and regularisation techniques are introduced to the PWE method to reduceill-conditioning in the large matrices which can arise. The identication of the modes of vibration is aided by examining proles of the displacements, electrical potentialand Poynting vector. The dispersive behaviour of a 2-2 composite transducer with high shear attenuation in the passive phase is examined. The model shows thatthe use of a high shear attenuation ller material improves the frequency band gap surrounding the fundamental thickness mode.