Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A weighted communicability measure applied to complex brain networks

Crofts, J.J. and Higham, D.J. (2009) A weighted communicability measure applied to complex brain networks. Journal of the Royal Society Interface, 6 (33). pp. 411-414. ISSN 1742-5689

[img]
Preview
Text (strathprints013675)
strathprints013675.pdf - Accepted Author Manuscript

Download (121kB) | Preview

Abstract

Recent advances in experimental neuroscience allow non-invasive studies of the white matter tracts in the human central nervous system, thus making available cutting-edge brain anatomical data describing these global connectivity patterns. Via magnetic resonance imaging, this non-invasive technique is able to infer a snap-shot of the cortical network within the living human brain. Here, we report on the initial success of a new weighted network communicability measure in distinguishing local and global differences between diseased patients and controls. This approach builds on recent advances in network science, where an underlying connectivity structure is used as a means to measure the ease with which information can flow between nodes. One advantage of our method is that it deals directly with the real-valued connectivity data, thereby avoiding the need to discretise the corresponding adjacency matrix, that is, to round weights up to 1 or down to 0, depending upon some threshold value. Experimental results indicate that the new approach is able to extract biologically relevant features that are not immediately apparent from the raw connectivity data.