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Summary In order to describe the comovements in both conditional mean and conditional

variance of high dimensional nonstationary time series by dimension reduction, we introduce the

conditional heteroscedasticity with factor structure to the error correction model. The new model

is called the error correction–volatility factor model. Some specification and estimation approaches

are developed. In particular, the determination of the number of factors is discussed. Our setting

is general in the sense that we impose neither i.i.d assumption on idiosyncratic components in

the factor structure nor independence between factors and idiosyncratic errors. We illustrate the

proposed approach with a Monte Carlo simulation and a real data example.
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1 Introduction

The concept of cointegration ( Granger (1981), Granger and Weiss (1983), Engle and Granger

(1987)) has been successfully applied to modelling multivariate nonstationary time sereis. The lit-

erature on cointegration is extensive. The most frequently used representations for a cointegrated

system are the error correction model (ECM) of Engle and Granger (1987), the common trends

form of Stock and Watson (1988), and the triangular model of Phillips (1991). The error correc-

tion model has been applied in various practical problems, such as determining exchange rates,

capturing the relationship between expenditure and income, modelling and forecasting inflation,

etc. From the equilibrium point of view, the term “error correction” reflects the correction on the

long-run relationship by the short-run dynamics.

However, the error correction model ignores the characteristics of time-varying volatility, which

plays an important role in various financial areas such as portfolio selection, option evaluation,

and risk management. Kroner and Sultan (1993) argued that neglect of either cointegration or

time-varying volatility would affect the hedging performance of existing models in the literature

for the futures market. Similar conclusion has been given by Ghost (1993) and Lien (1996)

through empirical calculation and theoretical analysis respectively. Therefore the traditional error

correction model needs to be generalized to have conditional heteroscedasticity for capturing both

cointegration and time-varying volatility.

Univariate volatility models have been extended to multivariate cases. Extensions of the gen-

eralized autoregressive heteroscedastic (GARCH) model (Bollerslev (1986)) include, for example,

vectorized GARCH (VEC-GARCH) model of Bollerslev et al. (1988), the BEKK model of En-

gle and Kroner (1995) 1, a dynamic conditional correlation (DCC) model of Engle (2002) and

Engle and Sheppard (2001), a generalized orthogonal GARCH model of van der Weide (2002);

see a survey of multivariate GARCH models by Bauwens, Laurent and Rombouts (2006). These

models assume that a vector transformation of the covariance matrix can be written as a linear

combination of its lagged values and the innovations. Andersen et al. (1999) showed that these

models perform well relatively to competing alternatives. But the curse of dimensionality be-

comes a major obstacle in application. A useful approach to simplifying the dynamic structure

of a multivariate volatility process is to use factor models. As is well known, factor models have

been used for performance evaluation and risk measurement in finance. Moreover, it is now widely

1The early version of this paper was written by Baba, Engle, Kraft and Kroner, which led to the name BEKK

of this model.

2



accepted that financial volatilities move together over time across assets and markets (Anderson

et al. (2006)). These make it reasonable that we impose a factor structure on the residual term of

a multivariate error correction model. In this sense, an error correction–volatility factor (EC-VF)

model can capture the features of comovements in both conditional mean (cointegration) and

conditional variance (volatility factors) of a high dimensional time series.

The contribution of this paper is to estimate the EC-VF model. The set of parameters is

divided into three subsets: structural parameter set including lag order and all autoregressive

coefficient vector and matrices, cointegration parameter set including the cointegration vectors

and the rank, and factor parameter set including the factor loading matrix and the number of

factors. We conduct a two-step procedure to estimate relevant parameters. First, assuming that

the structural and cointegration parameters are known, we give the estimation of factor loading

matrix in the volatility factor model, and then give a method to determine the number of factors

consistently. Our model specification and estimation approaches are general, because we impose

neither i.i.d assumption on the idiosyncratic components in the factor structure nor independence

between factors and idiosyncratic errors. In contrast to the innovation expansion method in

Pan and Yao (2008) and Pan et al. (2007), where they can not prove that their algorithm for

the number of factors is consistent, our method in this paper is based on a penalized goodness-

of-fit criterion. We prove our estimator of the number of factors is consistent. Secondly, the

structural and cointegration parameters will be consistently estimated without knowing the true

factor structure. The main distinction between Bai and Ng (2002) and this paper is that their

factor model concerned the unconditional mean of economic variables while our factor structure

is imposed on the conditional variance to reduce the dimension of volatilities.

The rest of the paper is organized as follows. Section 2 defines the EC-VF model and mentions

some practical backgrounds of the model. Section 3 presents an information criterion for deter-

mining the number of factors and the consistency of our estimator. In section 4, a simple Monte

Carlo simulation is conducted to check the accuracy of the proposed estimation for the factor

loading matrix and the number of factors. In section 5, an application to financial risk manage-

ment is discussed to show the advantages of the EC-VF model to other traditional alternatives.

All theoretical proofs are given in the Appendix.
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2 Model

2.1 Definition

Suppose that {Yt} is a d×1 time series. The error correction–volatility factor (EC-VF) model

is of the form










∆Yt = µ + Γ1∆Yt−1 + Γ2∆Yt−2 + · · · + Γk−1∆Yt−k+1 + Γ0Yt−1 + Zt

Zt = AFt + et

(2.1)

where ∆Yt = Yt − Yt−1, µ is a d × 1 vector, Γi, i = 1, ..., k, are d × d matrices. The rank of Γ0,

denoted by m, is called the cointegration rank. {Zt} is strictly stationary with E(Zt|Ft−1) = 0

and V ar(Zt|Ft−1) = Σz(t), where Ft = σ(Zt, Zt−1, · · · ). Ft is a r×1 time series, r < d is unknown,

A is a d × r unknown constant matrix. Ft and et are assumed to satisfy










E(Ft|Ft−1) = 0, E(et|Ft−1) = 0,

E(Fte
′
t|Ft−1) = 0, E(ete

′
t|Ft−1) = Σe,

(2.2)

where Σe is a positive definite matrix and independent of t. The components of Ft are called

‘factors’, and r is the number of factors. Note that Ft and et are conditionally uncorrelated. There

is no loss of generality in assuming that E(FtF
′
t) is a r× r positive definite matrix (otherwise, the

above model may be expressed equivalently in terms of a smaller number of factors).

Remark 1. The error term {Zt} in an EC-VF model is conditionally heteroscedastic and follows

a factor structure, while the error term in the traditional error correction model developed by

Engle and Granger (1987) is covariance stationary with mean 0. Here the factor structure is not

the classical one because we assume neither that the idiosyncratic components et are i.i.d with a

diagonal covariance matrix nor that the factor components Ft is independent of et.

Model (2.1) assumes that the volatility dynamics of ∆Yt is determined by a lower dimensional

volatility dynamics of Ft and the static variation of et, as

Σy(t) = Σz(t) = AΣf (t)A′ + Σe, (2.3)

where Σy(t) = V ar(∆Yt|Ft−1) and Σf (t) = V ar(Ft|Ft−1). Without loss of generality, we assume

rank(A) = r. The lower dimensional volatility dynamics Σf (t) can be fitted by, for example, the

dynamic conditional correlation model of Engle (2002) or the conditionally uncorrelated compo-

nents model of Fan, Wang and Yao (2005).
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2.2 Practical background

Factor analysis is an effective way for dimension reduction, and then it is an useful statistical

tool for modelling multivariate volatility. Because there might exist cointegration relationship

among financial asset prices, the framework given by (2.1) applies to many cases of financial

analysis.

1. Value-at-Risk

Value-at-Risk defines the maximum expected loss on an investment over a specified horizon

at a given confidence level, and is used by many financial institutions as a key measurement of

market risk. The Value-at-Risk of a portfolio of multiple assets can be obtained when the prices

are described by an EC-VF model. The EC-VF model can be also used to determine an optimal

portfolio based on maximizing expected returns subject to a downside risk constraint measured

by Value-at-Risk.

2. Hedge ratio

The importance of incorporating the cointegration relationship into statistical modelling of

spot and future prices is well documented in the literature for futures market. It has been shown

in Lien and Luo (1994) that although GARCH model may characterize the price behavior, the

cointegration relationship is the only indispensable component when comparing ex-post perfor-

mance of various hedge strategies. A hedger who omits the cointegration relationship will adopt

a smaller than optimal futures position, which results in a relatively poor hedge performance; see

Lien and Tse (2002) for a survey on hedging and references there.

3. Multi-factor option

A multi-factor option (or multi-asset option) is an option whose payoff depends upon the

performance of two or more underlying assets. Basket and rainbow options belong to this category.

Duan and Pliska (2004) investigated theoretical and practical aspects of such options when the

multiple underlying assets are co-integrated. In particular, they proposed an error correction

model with stochastic volatilities that follow a multivariate GARCH process. To avoid introducing

too many parameters, they give a parsimonious diagonal model for the volatilities, but it is rather

restrictive for the cross-dynamics. In contrast, volatility factor models can be used for reducing

dimension as well as for representing the dynamics of both variances and covariances. The EC-VF

model, with some modification, is more suitable for valuating the multi-factor options.
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3 Estimation of the number of factors

The parameter set of the EC-VF model (2.1) is {Θ;Γ0; A}, in which Θ = {µ,Γ1, · · · , Γk−1} is

called the structural parameter, Γ0 the cointegration parameter and A the factor parameter. In

first two subsections, {Θ, Γ0} is assumed known and its determination will be discussed later in

subsection 3.3.

3.1 Determining A

Note that the factor loading matrix A and the vector of factors Ft in (2.1) are not separately

identifiable. Our goal is to determine the rank of A and the space spanned by the columns of A.

Without loss of generality, we may assume A′A = Ir, where Ir denotes the r × r identity matrix.

Let M(A) be the linear subspace of Rd spanned by the columns of A, which is called the factor

loading space. Then we need to estimate M(A) or its orthogonal complement M(B), where B

is a d × (d − r) matrix for which (A, B) forms a d × d orthogonal matrix, i.e. B′A = 0 and

B′B = Id−r. Now it follows from (2.1) that

B′Zt = B′et. (3.1)

From (3.1) and the assumption that {et} is a conditional homoscedastic sequence of martingale

differences (see (2.2)), we have

E(B′ZtZ
′
tB|Ft−1) = B′ΣeB = B′ΣzB,

where Σz = E(ZtZ
′
t). This implies that

B′E(ZtZ
′
t − Σe)I(Zt−τ ∈ C)B = 0 for any τ ≥ 1 and C ∈ B, (3.2)

or equivalently

sup
C∈B

‖B′E[(ZtZ
′
t − Σe)I(Zt−τ ∈ C)]B‖ = 0 for any τ ≥ 1 and C ∈ B, (3.3)

where B consists of some subsets in Rd, and ‖M‖ = [tr(M ′M)]1/2 denotes the norm of matrix M .

Hence we may estimate B by minimizing

Φn(B) = sup
1≤τ≤τ0,C∈B

‖B′ 1

n − τ0

n
∑

t=τ0+1

(ZtZ
′
t − Σ̂z)I(Zt−τ ∈ C)B‖ (3.4)

subject to the condition B′B = Id−r, where τ0 is a prescribed positive integer and Σ̂z =

1
n−τ0

∑n
t=τ0+1 ZtZ

′
t. This is a high-dimensional optimization problem, but it does not explic-

itly address the issue how to determine the number of factors r consistently. We first assume r is
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known and introduce some properties of the estimator of B derived by Pan et al. (2007) before

we present a consistent estimator of r.

Let Hr be the set of all d×(d−r) (d ≥ r) matrix B satisfying B′B = Id−r. We partition Hr into

equivalent classes such that B1, B2 ∈ Hr belong to the same class if and only if M(B1) = M(B2),

which is equivalent to

(Id − B1B
′
1)B2 = 0 and (Id − B2B

′
2)B1 = 0. (3.5)

Define

D(B1, B2) = ‖(Id − B1B
′
1)B2‖.

The equivalent classes can be regarded as the elements of the quotient space Hr
D = Hr/D defined

by D-distance. It can be shown that D is a well-defined metric distance on the space Hr
D, and

thus (Hr
D, D), which is our parametric space, is a metric space; see Pan and Yao (2008).

Our estimator of B is the minimizer of Φn(·) in Hr
D, i.e.

B̂ = arg min
B∈Hr

D

Φn(B).

Under the assumptions listed below, the estimator B̂ is consistent with a convergence rate
√

n.

Assumption A. {Zt} is a strictly stationary d-dimensional time series with E‖Zt‖2p < ∞ for

some p > 2. The β-mixing coefficients

β(n) = E{ sup
B∈F∞

n

|P (B) − P (B|F0
−∞)|}

satisfy βn = O(n−b) for some b > p
p−2 , where F j

i is the σ-algebra generated by {Zt, i ≤ t ≤
j}.

Assumption B. Denote Φ(B) = sup1≤τ≤τ0,C∈B ‖BE[(ZtZ
′
t − Σe)I(Zt−τ ∈ C)]B‖. There exists

a matrix B0 ∈ Hr which minimizes Φ(B), and Φ(B) reaches its minimum value at a matrix

B ∈ Hr if and only if D(B, B0) = 0.

Assumption C. There exists a positive constant a such that Φ(B) − Φ(B0) ≥ aD(B,B0) for

any matrix B ∈ Hr.

By the similar way to that in proof of Theorem 2 in Pan et al. (2007), we can prove the fol-

lowing result, which is useful in deriving a consistent estimator for the number of factors in next

subsection.
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Theorem 3.1. If the collection B of subsets in Rd is a VC-class2, and Assumptions A and B

hold, then

sup
B∈HD

√
n|Φn(B) − Φ(B)| = Op(1) (3.6)

If, in addition, Assumption C also holds,

√
nD(B̂, B0) = Op(1). (3.7)

3.2 Determining r

Let r0 be the true number of factors and A0 the true factor loading matrix with rank r0. We

discuss how to estimate r0 based on the estimated factor loading matrix Â (or its counterpart B̂)

derived in the previous subsection. The basic idea is to treat the number of factors as the “order”

of model (2.1) and to determine the order in terms of an appropriate information criterion.

In the following, we always assume that Assumptions A-C hold. Let M l denote a matrix with

rank d− l. In particular, Br0

0 and B̂r (0 ≤ r ≤ d) denote the matrices B0 and B̂ with ranks d− r0

and d − r respectively.

Let

Φn(r, B̂r) = sup
1≤τ≤τ0,C∈B

‖B̂r′D̂n,τ (C)B̂r‖, (3.8)

Φ(r,Br
0) = sup

1≤τ≤τ0,C∈B
‖Br′

0 Dτ (C)Br
0‖,

where

D̂n,τ (C) =
1

n − τ0

n
∑

t=τ0+1

(ZtZ
′
t − Σ̂z)I(Zt−τ ∈ C),

Dτ (C) = E[(ZtZ
′
t − Σe)I(Zt−τ ∈ C)],

B̂r = arg min
B∈Hr

D

Φn(r,B), Br
0 = arg min

B∈Hr
D

Φ(r,B).

Our penalized goodness-of-fit criterion is defined as

PC(r) = Φn(r, B̂r) + rg(n), (3.9)

where g(n) is a penalty for “overfitting”. We may estimate r0 by minimizing PC(r), i.e.

r̂ = arg min
0≤r≤d

PC(r).

2The definition of Vapnik-C̆ervonenkis (VC) class can be found in van der Vaart and Wellner (1996).
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We call (3.9) a penalized goodness-of-fit criterion because of Lemma A.1.

Remark 2. Φn(·) can be regarded as fitting error, because a model with r + 1 factors can fit no

worse than a model with r factors, while Lemma A.1 shows that Φn(·) is a non-increasing function

of r. But the efficiency is lost as more factors are estimated. For example, there is neither error

nor efficiency in the extreme case when r = d, Φn(d, B̂d) = 0 with B̂d = 0.

The following theorem shows that r̂ is a consistent estimator of r0 provided that the penalty

function g(n) satisfies some mild conditions. Then, the problem left in Pan and Yao (2007) is

solved.

Theorem 3.2. Under assumptions A-C, as n → ∞, r̂
P→ r0 provided that g(n) → 0 and

√
ng(n) → ∞.

3.3 Determining {Θ, Γ0}

In this subsection, we give an estimation of the structural and cointegration parameter sets

without knowledge of the true factor structure for Zt. By the Grange representation theorem,

if there are exactly m cointegration relations among the components of Yt, and Γ0 admits the

decomposition Γ0 = γα′, then α is a d×m matrix with linearly independent columns and α′Yt is

stationary. In this sense, α consists of m cointegration vectors. Since α and γ are not separately

identifiable, our goal is to determine the rank of α, i.e. the dimension of the space spanned by

the columns of α. Besides Assumptions A-C on {Zt}, we need an additional assumption on {Yt}
as follows.

Assumption D. The process Yt satisfies the basic assumptions of the Granger representation

theorem given by Engle and Granger (1987), and E‖α′Yt−1‖4 < ∞.

Our estimation of cointegration vectors is the solution to the following optimization problem

max
α′S11α=Im

tr(α′S10S01α), (3.10)

where Sij = T−1
∑T

t=1
RitR

′

jt, R0t = ∆Yt − Θ1Xt, R1t = Yt−1 − Θ2Xt, Xt = (1, ∆Y ′

t−1, . . . ,∆Y ′

t−k+1
)′,

Θ1 =
∑T

t=1
∆YtX

′

t(
∑T

t=1
XtX

′

t)
−1, Θ2 =

∑T

t=1
Yt−1X

′

t(
∑T

t=1
XtX

′

t)
−1. The solution of (3.10) is α̂ ≡

(α̂1, · · · , α̂m), where α̂1, · · · , α̂m are the m generalized eigenvectors of S10S01 with respect to S11

corresponding to the m largest generalized eigenvalues.

The estimated cointegration vectors are consistent with the standard root-n convergence rate.

The corresponding estimator γ̂ = S01α̂ of the cointegration loading matrix and the estimator
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Θ̂ = Θ1 − γ̂α̂′Θ2 of the structural parameter are also consistent. These conclusions are obtained

by Li, Pan and Yao (2006), who also give a joint estimation for the cointegration rank and the

lag order of the error correction model by a penalized goodness-of-fit measure

M(m, k) = R(m, k, α̂) + nm,kg1(n), (3.11)

where

R(m, k, α̂) = tr(S00 − S01α̂(α̂′S11α̂)−1α̂′S10), (3.12)

g1(n) is the penalty for “overfitting” and nm,k is the number of free parameters. Note that

nm,k = d + d2(k − 1) + 2dm − m2 for model (2.1). We may estimate m0 by minimizing M(m, k),

i.e.

(m̂, k̂) = arg min
0≤m≤d,1≤k≤K

M(m, k).

where K is a prescribed positive integer. Let k0 be the true lag order. The theorem below ensures

that (m̂, k̂) is a consistent estimator for (m0, k0).

Theorem 3.3. Under assumptions A-D, as n → ∞, (m̂, k̂)
P→ (r0, k0) provided that g1(n) → 0

and ng1(n) → ∞.

In practice, the choice of penalty function g(·) is flexible, e.g. ln(n)/
√

n or 2 ln(ln(n))/
√

n.

4 Monte Carlo simulation

We present a simple Monte Carlo experiment to illustrate the proposed approach in this

section. Particularly we check the accuracy of our estimation for the factor loading matrix A and

the number of factors r.

Consider a simple EC-VF model with d = 6, m = 1, r = 1,























∆Yt = µ + γα′Yt−1 + Zt,

Zt = AFt + et,

Ft|Ft−1 ∼ N(0, σ2
t ), et|Ft−1 ∼ N(0, I6),

(4.1)

where σ2
t = β0+β1F

2
t−1+β2σ

2
t−1, et is independent of Ft, and the values of parameters are given as

follows: µ = (0.2028, 0.1987, 0.6038, 0.2722, 0.1988, 0.0153)′, γ = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6)′, α =

(1, 2,−1,−1,−2, 3)′, A = (
√

6
6 ,

√
6

6 ,
√

6
6 ,

√
6

6 ,
√

6
6 ,

√
6

6 ,
√

6
6 )′ and β = (β0, β1, β2)

′ = (0.02, 0.10, 0.76)′.
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Note that A′A = 1. We conduct 2000 replications, and for each replication, the sample sizes

are n = 500 and 1000 respectively. We estimate the transformation matrix B by minimizing

Φn(B) defined by (3.4), and measure the estimation error of the factor loading space M(A) by

D1(A, Â) = ([tr{Â′(Id − AA′)Â} + tr(B̂′AA′B̂)]/d)1/2.

The coefficients βi, i = 0, 1, 2, are estimated by quasi-MLE based on a Gaussian likelihood. The

resulting estimates are summarized in Table 1.

The mean of estimation errors D1(A, Â) is less than 0.06 while it decreases over 15% as the

sample size increases from 500 to 1000. The negative biases indicate a slight underestimation for

the heteroscedastic coefficients. The relative frequencies for r̂ taking different values are listed

in Table 2. It shows that when the sample size n increases, the estimation of r becomes more

accurate.

5 An application

The Value-at-Risk (VaR) is widely adopted by banks and other financial institutions to mea-

sure and manage market risk, as it reflects downside risk of a given portfolio or investment.

Specifically, at a given confidence level 1 − a, the VaR of a portfolio with weight ωt is defined as

the solution to

P (ωt∆Yt < V aRa|Ft−1) = a, (5.1)

where ∆Yt is a vector of log returns of assets in the portfolio. In the case when the conditional

density f(∆Yt|Ft−1) is normal, (5.1) reduces to the well known formula

V aRa = ωtµy(t) + (ω′
tΣy(t)ωt)

1/2za, (5.2)

where za is the a-th quantile of the univariate standard normal distribution.

In this section, we attempt to compare the VaR forecasting results by assuming three different

models: AR-DCC, EC-DCC, EC-VF-DCC for the asset price series {Yt}. The DCC refers to

dynamic conditional correlation, a volatility model proposed by Engle (2002). Focusing on the

methodology, we only consider the case when the conditional multivariate density f(∆Yt|Ft−1) is

normal, while the impact of other distributions (like Student-t and some nonparametric densities)

on VaR computation is beyond our scope here.
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5.1 Data set and estimation of the EC-VF-DCC model

Our data set consists of 2263 daily log prices of CSCO, DELL, INTC, MSFT and ORCL,

the five most active stocks in US market, from June 19, 1997 to June 16, 2006. The plots

of log returns (in percentage) are presented in Figure 1 which shows significant time-varying

volatilities. Descriptive statistics are listed in Table 3. All unconditional distributions of these

series exhibit excessive kurtosis and nonzero skewness, indicating significant departure from the

normal distribution.

The estimation procedure for the EC-VF-DCC model is given step by step as follows.

Step 1. Fit an error correction model for Yt to determine the structural and cointegration pa-

rameters. Compute the estimate of conditional mean vector µ̂y(t) = Θ̂Xt + γ̂α̂′Yt−1.

Step 2. Conduct a multivariate portmanteau test for the squared residuals obtained from the

previous step to detect conditional heteroscedasticity. If there exists serial dependence, fit

a volatility factor model for the residual series {Zt} to determine the factor loading matrix

Â, otherwise switch to Step 3 with Â = Ir and r = d.

Denote B = (b1, b2, · · · , bd−r), the objective function (3.4) can be modified to

Ψn(B) =

τ0
∑

τ=1

∑

C∈B
w(C)‖B′ 1

n − τ0

n
∑

t=τ0+1

(ZtZ
′
t − Σ̂z)I(Zt−τ ∈ C)B‖2

where w(C) ≥ 0 are weights which ensure that the sum over C ∈ B converges. In numerical

implementation, we simply take B as the collection of all the balls centered at the origin in

Rd and w(C) = {#(B)}−1.

An algorithm for estimating B and r is given as follows. Put

Ψ(b) =

τ0
∑

τ=1

Φ̃τ (b), Φ̃τ (b) =
∑

C∈B
w(C)[b′

1

n − τ0

n
∑

t=τ0+1

(ZtZ
′
t − Σ̂z)I(Zt−τ ∈ C)b]2,

Ψl(b) =

τ0
∑

τ=1

{

l−1
∑

i=1

∑

C∈B
w(C)[b̂′i

1

n − τ0

n
∑

t=τ0+1

(ZtZ
′
t − Σ̂z)I(Zt−τ ∈ C)b]2 + Φ̃τ (b)

}

.

Compute b̂1 by minimizing Ψ(b) subject to the constraint b′b = 1. For l = 2, · · · , d, compute

b̂l which minimizes Ψl(b) subject to the constraint b′b = 1, b′b̂i = 0 for i = 1, 2, · · · , l − 1.

Let r̂ = arg min0≤r≤d PC(r) with B̂r = (b̂1, b̂2, · · · , b̂r), where PC(r) is defined by (3.9).

Note that B̂r′B̂r = Id−r̂. Let Â consist of the r̂ (orthogonal) unit eigenvectors, corresponding

to the common eigenvalue 1, of matrix Id − B̂rB̂r′ .
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Step 3. Fit a dynamic conditional correlation (DCC) volatility model (Engle (2002)) for {Â′Zt}
and compute its conditional covariance Σ̃z(t) = D

1/2
t RtD

1/2
t .

To this end, we first fit each element of Dt with a univariate GARCH(1,1) model using the

i-th component of Â′Zt only, and then model the conditional correlation matrix Rt by

Rt = S(1 − θ1 − θ2) + θ1(εt−1ε
′
t−1) + θ2Rt−1,

where εt is a r̂×1 vector of the standardized residuals obtained from the separate GARCH(1,1)

fittings for the r̂ components of Â′Zt, and S is the sample correlation matrix of Â′Zt.

If Â = Id, the estimate of conditional covariance matrix Σ̂y(t) of ∆Yt is equal to Σ̃z(t) and

terminate the algorithm. Otherwise proceed to Step 4.

Step 4. The factor structure in (2.1) and the facts B′A = 0, B′et = B′Zt, AA′ + BB′ = Id lead

to a dynamics for Σy(t) ≡ Σz(t) as follows

Σ̂y(t) = ÂΣ̃z(t)Â
′ + ÂÂ′Σ̂zB̂B̂′ + B̂B̂′Σ̂z, (5.3)

where Σ̂z = 1
n−τ0

∑n
t=τ0+1 ZtZ

′
t.

We determine the cointegration rank by minimizing M(m, k) defined by (3.11). The surface

of M(m, k) is plotted against m and k in Figure 2. The minimum point of the surface is attained

at (m, k) = (1, 1), leading to an error correction model for this data set with lag order 1 and

cointegration rank 1. Applying the Ljung-Box statistics to the squared residuals, we have Q5(1) =

63.2724, Q5(5) = 305.7613 and Q5(10) = 633.7103. Based on asymptotic χ2 distributions with

degrees of freedom 11, 111 and 236,3 the p-values of these Q statistics are all close to zero.

Consequently, the portmanteau test confirms the existence of conditional heteroscedasticity. The

algorithm stated in Step 2 leads to an estimator for the number of factors, and PC(r) is plotted

against r in Figure 3. Clearly, a two-factor structure (i.e. r̂ = 2 ) is determined for the residual

series {Zt}.

5.2 Comparison of Value-at-Risk forecasting results

The VaRs are computed at level 0.05 (denoted by V aR0.05) for the last 1000 trading days

of data span. We assume three models: AR-DCC, EC-DCC, EC-VF-DCC for the asset prices

3The Qd(l) statistic has asymptotically a χ2 distribution with degree of freedom d2l − nm,k where nm,k =

d + d2(k − 1) + 2dm − m2 is the number of free parameters in the error correction model.
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{Yt}, and four time invariant portfolios with weights ω1 = (1, 1, 1, 1, 1)′/5, ω2 = (1, 2, 3, 4, 5)′/15,

ω3 = (5, 4, 3, 2, 1)′/15, ω4 = (1, 3, 5, 4, 2)′/15. To compare the VaR forecasting performances, we

calculate failure rates for the different specifications. The failure rate is defined as the proportion

of rt = ω′
t∆Yt smaller than the VaRs. For a correctly specified model, the empirical failure rate

is supposed to be close to the true level a. Tables 4 display the results for the five percent level.

We observe from table 4 that the EC-VF-DCC performs reasonably well, while AR-DCC has

a difficulty in providing failure rates close to 0.05. The empirical failure rates for AR-DCC are

high, which means that it underestimates the risk. The results for the EC-DCC and EC-VF-DCC

model are comparable, but the average computing time for EC-DCC is much longer, see the last

column of table 4. This shows that the factor structure imposed on the residual term of an error

correction model can improve the computational velocity in high-dimensional problems.

The above results show that the EC-VF model proposed in this paper is a promising tool for

risk analysis. First, it incorporate the impact of cointegration which makes the VaR computation

more accurate. Secondly, it deduces a high-dimensional optimization problem into a much lower-

dimensional problem, thus accelerates the VaR computation to a great extent.
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Appendix

Proofs

The first lemma shows the Φn(r, B̂r) defined in subsection 3.2 is a non-increasing function of the

number of factors r.

Lemma A.1 If 0 ≤ r1 < r2 ≤ d, then Φn(r1, B̂
r1) ≥ Φn(r2, B̂

r2).

Proof. For 0 ≤ r1 < r2 ≤ d, B̂r1 can be written as (B̃r2 , B̃d−(r2−r1)) where B̃r2 consists of the

first d − r2 columns of the matrix B̂r1 . We have

Φn(r1, B̂
r1) = sup

1≤τ≤τ0,C∈B
‖(B̃r2 , B̃d−(r2−r1))′D̂n,τ (C)(B̃r2 , B̃d−(r2−r1))‖

= sup
1≤τ≤τ0,C∈B

∥

∥

∥

∥

∥





B̃r′
2D̂n,τ (C)B̃r2 B̃r′

2D̂n,τ (C)B̃d−(r2−r1)

B̃d−(r2−r1)′D̂n,τ (C)B̃r2 B̃d−(r2−r1)′D̂n,τ (C)B̃d−(r2−r1)





∥

∥

∥

∥

∥

≥ sup
1≤τ≤τ0,C∈B

‖B̃r′
2D̂n,τ (C)B̃r2‖ = Φn(r2, B̃

r2)

≥ Φn(r2, B̂
r2).

The last inequality holds because B̂r is the minimizer of Φn(B) in the metric space (Hr
D, D).

The proof of Theorem 3.2 needs the following two lemmas.

Lemma A.2 For any fixed r with r0 ≤ r ≤ d, there exists a B ∈ Hr
D such that Φ(r,B) = 0.

For 0 ≤ r < r0, Φ(r,B) > 0 holds for all B ∈ Hr
D.

Proof. It is clear that B′A0 = 0 implies Φ(r,B) = 0 from the relation between Φ(r,B) and the

factor model with true loading matrix A0.

For r = r0, there must be a matrix in Hr0

D , denoted by Br0 , such that Br′
0A0 = 0, thus

Φ(r0, B
r0) = 0 and it reaches the minimum value. We have Br0 = Br0

0 in Hr0

D by Assumption B.

For r0 < r ≤ d, let B = Br0

0 H, where H is an arbitrary (d − r0) × (d − r) matrix such that

H ′H = Id−r. Then, B ∈ Hr
D and B′A0 = 0. In the other words, Φ(r,Br0

0 H) = 0.
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For any B ∈ Hr
D with r < r0, B′A0 6= 0. If Φ(r,B) = 0, which means that for any 1 ≤ τ ≤ τ0

and any C ∈ B, B′Dτ (C)B = 0, by choosing C = Rd, we have B′A0E(FtF
′
t)A

′
0B = 0. This is

impossible because E(FtF
′
t) is a positive definite matrix.

Lemma A.3 For any 0 ≤ r < r0, there exists a κr > 0 such that

p lim
n→∞

[Φn(r, B̂r) − Φn(r0, B̂
r0)] ≥ κr,

where p lim denotes the limit in probability. For any r0 ≤ r < d, it holds that

Φn(r, B̂r) − Φn(r0, B̂
r0) = Op(

1√
n

).

Proof. It follows from the definition of B̂ that

Φn(r, B̂r) − Φn(r0, B̂
r0) ≥ Φn(r, B̂r) − Φn(r0, B

r0

0 ).

Recall that Φ(r0, B
r0

0 ) = 0 by Lemma A.2. Hence,

Φn(r, B̂r) − Φn(r0, B
r0

0 )

= [Φn(r, B̂r) − Φ(r, B̂r)] − [Φn(r0, B
r0

0 ) − Φ(r0, B
r0

0 )] + Φ(r, B̂r)

= Op(
1√
n

) + Φ(r, B̂r) ≥ Op(
1√
n

) + Φ(r,Br
0). (A.1)

The second equality holds by the similar way to (3.6) with a slight modification that B̂r is related

to n. The last inequality is from the definition of B0. These imply that, for any 0 ≤ r < r0,

p lim
n→∞

[Φn(r, B̂r) − Φn(r0, B̂
r0)] ≥ κr := Φ(r,Br

0),

and from Lemma A.2, κr > 0.

For the second part, since

|Φn(r, B̂r) − Φn(r0, B̂
r0)| ≤ |Φn(r, B̂r) − Φn(r0, B

r0

0 )| + |Φn(r0, B
r0

0 ) − Φn(r0, B̂
r0)|

≤ 2 max
r0≤r≤d

|Φn(r, B̂r) − Φn(r0, B
r0

0 )|,

it is sufficient to prove that for any r0 ≤ r ≤ d,

Φn(r, B̂r) − Φn(r0, B
r0

0 ) = Op(
1√
n

).

Notice that, from (A.1), Φn(r, B̂r) − Φn(r0, B
r0

0 ) = Op(
1√
n
) + Φ(r, B̂r). Thus we need to prove

Φ(r, B̂r) = Op(
1√
n
) for any r0 ≤ r ≤ d, where

Φ(r, B̂r) = sup
1≤τ≤τ0,C∈B

‖B̂r′Dτ (C)B̂r‖.
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For an arbitrary (d − r0) × (d − r) matrix H such that H ′H = Id−r, we have

‖B̂r′Dτ (C)B̂r‖

=‖(B̂r − Br0

0 HH ′B
r′
0

0 B̂r + Br0

0 HH ′B
r′
0

0 B̂r)′Dτ (C)(B̂r − Br0

0 HH ′B
r′
0

0 B̂r + Br0

0 HH ′B
r′
0

0 B̂r)‖

=‖[(Id − Br0

0 HH ′B
r′
0

0 )B̂r]′Dτ (C)B̂r + (Br0

0 HH ′B
r′
0

0 B̂r)′Dτ (C)(Id − Br0

0 HH ′B
r′
0

0 )B̂r‖

where the last equality holds because the relation B
r′
0

0 A0 = 0 implies that B
r′
0

0 Dτ (C)Br0

0 = 0 for

any τ ≥ 1 and C ∈ B. Hence,

‖B̂r′Dτ (C)B̂r‖ ≤ ‖(Id − Br0

0 HH ′B
r′
0

0 )B̂r‖‖Dτ (C)‖(‖B̂r‖ + ‖Br0

0 HH ′B
r′
0

0 B̂r‖)

= D(B̂r, Br0

0 H)‖Dτ (C)‖(
√

d − r + ‖Br0

0 HH ′B
r′
0

0 B̂r‖)

≤ D(B̂r, Br0

0 H)‖Dτ (C)‖(
√

d − r(1 + d − r)).

Note that Φ(r,Br0

0 H) = 0 by Lemma A.2, that is D(Br0

0 H, Br
0) = 0. Thus D(B̂r, Br0

0 H) =

Op(
1√
n
). It is easy to see that sup1≤τ≤τ0,C∈B ‖Dτ (C)‖ = Op(1). Therefore, Φ(r, B̂r) = Op(

1√
n
).

This completes the proof.

Proof of Theorem 3.2. The objective is to verify that limn→∞ P (PC(r)−PC(r0) < 0) = 0 for

all 0 ≤ r ≤ d and r 6= r0, where

PC(r) − PC(r0) = Φn(r, B̂r) − Φn(r0, B̂
r0) − (r0 − r)g(n).

For r < r0, if g(n) → 0 as n → ∞,

P (PC(r) − PC(r0) < 0) = P (Φn(r, B̂r) − Φn(r0, B̂
r0) < (r0 − r)g(n)) → 0

because, by Lemma A.3, Φn(r, B̂r) − Φn(r0, B̂
r0) has a positive limit in probability.

For r > r0, Lemma A.3 implies that Φn(r, B̂r)−Φn(r0, B̂
r0) = Op(

1√
n
). Thus, if

√
ng(n) → ∞

as n → ∞, we have

P (PC(r) − PC(r0) < 0) = P (Φn(r0, B̂
r0) − Φn(r, B̂r) > (r − r0)g(n))

= P (
√

n[Φn(r0, B̂
r0) − Φn(r, B̂r)] > (r − r0)

√
ng(n)) → 0.

The proof of Theorem 3.2 is completed.
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Table 1: Simulation results: summary statistics of estimation errors

D1(Â, A) β̂0 β̂1 β̂2

Mean 0.0563 0.0179 0.0894 0.7414

Median 0.0438 0.0183 0.0827 0.7521

n=500 STD 0.0601 0.0022 0.0403 0.0935

Bias - -0.0021 -0.0106 -0.0186

RMSE - 0.0029 0.0454 0.0958

Mean 0.0477 0.0193 0.0922 0.7481

Median 0.0390 0.0199 0.0897 0.7543

n=1000 STD 0.0426 0.0010 0.0276 0.0724

Bias - -0.0007 -0.0078 -0.0119

RMSE - 0.0013 0.0295 0.0766

Table 2: Relative frequencies for r̂ taking different values, when r = 1.

r̂ 0 1 2 3 4 5 6

n=500 .0120 .8425 .1310 .0105 .0040 0 0

n=1000 .0090 .9765 .0100 .0045 0 0 0

Table 3: Summary statistics of the log-returns

n=2263 CSCO DELL INTC MSFT ORCL

Mean 0.000423 0.000523 1.95×10−5 0.0002 0.000418

Stdev 0.031847 0.03027 0.030313 0.023074 0.0364

Min -0.145 -0.20984 -0.24868 -0.16976 -0.34615

Max 0.218239 0.163532 0.183319 0.178983 0.270416

Skewness 0.149215 -0.11826 -0.39156 -0.17347 -0.22637

Kurtosis 4.55802 3.690575 5.63186 5.955046 8.51963
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Table 4: Comparison of V aR0.05

ω1 ω2 ω3 ω4 t (Min)

AR-DCC 0.067 (0.001) 0.071 (0.000) 0.065 (0.005) 0.062 (0.032) 287.3

EC-DCC 0.052 (0.659) 0.059 (0.061) 0.051 (0.713) 0.053 (0.268) 294.7

EC-VF-DCC 0.049 (0.713) 0.056 (0.308) 0.053 (0.268) 0.055 (0.312) 41.5

Figures in parentheses are p-values for the Kupiec likelihood ratio test used to compare the

empirical failure rate with its theoretical value, see Kupiec (1995). The average computing time

in minute for each model is recorded in the last column.

Figure 1: Plots of daily log-returns (%) of (a)CSCO, (b)DELL, (c)INTC, (d)MSFT and (e)ORCL.

Time span is from June 19, 1997 to June 16, 2006 with 2263 observations.
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Figure 2: Plot of M(m, k) against the cointegration rank m and the lag order k
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Figure 3: Plot of PC(r) against the number of factors r
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