Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Multidimensional partitioning and bi-partitioning : analysis and application to gene expression datasets

Kalna, Gabriela and Vass, J. Keith and Higham, Desmond J. (2008) Multidimensional partitioning and bi-partitioning : analysis and application to gene expression datasets. International Journal of Computer Mathematics, 85 (3/4). pp. 475-485. ISSN 0020-7160

[img]
Preview
PDF (kvh.pdf)
kvh.pdf
Accepted Author Manuscript

Download (203kB) | Preview

Abstract

Eigenvectors and, more generally, singular vectors, have proved to be useful tools for data mining and dimension reduction. Spectral clustering and reordering algorithms have been designed and implemented in many disciplines, and they can be motivated from several dierent standpoints. Here we give a general, unied, derivation from an applied linear algebra perspective. We use a variational approach that has the benet of (a) naturally introducing an appropriate scaling, (b) allowing for a solution in any desired dimension, and (c) dealing with both the clustering and bi-clustering issues in the same framework. The motivation and analysis is then backed up with examples involving two large data sets from modern, high-throughput, experimental cell biology. Here, the objects of interest are genes and tissue samples, and the experimental data represents gene activity. We show that looking beyond the dominant, or Fiedler, direction reveals important information.