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This paper presents a micromechanical analysis of the macroscopic

behaviour of natural clay. A microstructural stress–strain model for

clayey material has been developed which considers clay as a col-

lection of clusters. The deformation of a representative volume of

the material is generated by mobilizing and compressing all the

clusters along their contact planes. Numerical simulations of mul-

tistage drained triaxial stress paths on Otaniemi clay have been

performed and compared the numerical results to the experimen-

tal ones in order to validate the modelling approach. Then, the

numerical results obtained at the microscopic level were analysed

in order to explain the induced anisotropy observed in the clay

behaviour at the macroscopic level. The evolution of the state vari-

ables at each contact plane during loading can explain the changes

in shape and position in the stress space of the yield surface at the

macroscopic level, as well as the rotation of the axes of anisotropy

of the material.

1. Introduction

Natural soft clays often exhibit a significant degree of anisotropy, which is developed during their

geological formation as in deposition, sedimentation, consolidation or by any subsequent straining

(see, e.g., Tavenas and Lereoueil, 1977; Muir Wood, 1990; Burland, 1990; Diaz Rodriguez et al., 1992).



In order to take into account the anisotropic mechanical behaviour of clay, a number of elastic–plastic

stress–strainmodels have been developed, such as themodels by Nova (1985), Dafalias (1986),Whittle

and Kavvadas (1994), Pestana and Whittle (1999), Wheeler et al. (2003), Dafalias et al. (2006), etc.

Hashiguchi and Mase (2007) developed a model employing a rotational kinematic hardening function

formodelling theanisotropyof cemented sand. Yanget al. (2006)proposedamiddle surfacemodelusing

three pseudo-yield surfaces. A kinematic hardening rulewas applied to the second pseudo-yield surface

formodelling the anisotropic behaviour of sand. More recently, various kinematic hardening rules have

been, respectively, investigated for frozen soils, unsaturated soils, andgranularmediaby Lai et al. (2008),

Muraleetharanet al.(2008), andTsutsumi andKaneko (2008). Thekey featureof thesemodels is to adopt

an asymmetrical yield surface for the modelling of inherent anisotropy due to the geological formation

process, and to incorporate a kinematic hardening law for themodelling of induced anisotropy, inwhich

the kinematic hardening law describes how the yield surface moves and changes its shape with the

applied stresses. Both the initial yield surface and the kinematic hardening law of these models have

been constructed phenomenologically from experimental results. Due to the complex nature of soil

behaviour, it is difficult to construct a kinematic hardening law that is simple, effective, and at the same

time, capable of capturing correctly the salient features of soil behaviour.

Besides the kinematic hardening approach, a potentially attractive way of modelling anisotropic

material is themicrostructural approach, inwhich the stress–strain relationship of a representative ele-

ment is obtained by mobilizing contact planes of various orientations. The concept goes back to Taylor

and Budiansky in their models for polycrystalline material (e.g., Batdorf and Budianski, 1949). Similar

approaches can alsobe found in themodels of rock and soils (e.g., Calladine, 1971;multilaminatemodels

by Pande and Sharma, 1982; Cudny and Vermeer, 2004), in the models of concrete (e.g., micro-plane

model by Bazant et al., 1995), and in the models of granular materials and sands (e.g., Chang and Liao,

1990; Chang and Gao, 1995; Chang and Hicher, 2005; Nicot and Darve, 2007).

The proposed approach can better model anisotropic material due to the following two reasons: (1)

the state variables (local stress and strain) are naturally different in the contact planes according to

their orientations related to the applied load. Since contact stiffness and contact strength are stress-

dependent, this would lead to different properties for each plane. Thus, the applied stress would create

anisotropy for the material in a natural manner; (2) the evolution of the state variables (local stress

and strain) is attained directly from the applied stress on each contact plane. There is no need to define

a yield surface and a kinematic hardening rule in order to follow the evolution of the anisotropy.

In this paper, the development of a microstructure based elasto-plastic constitutive model is first

presented. The model is then used to predict multistage drained triaxial stress path tests on Otaniemi

clay. A numerical microstructural investigation is also carried out, which is intended to explain the

induced anisotropy through the behaviour on contact planes. Finally, the microstructural model is

used to construct the yield surface and to explain macro kinematic hardening of yield surface, i.e.,

how the yield surface expands, rotates, and changes its shape due to different stress paths.

2. Constitutive model

A clay particle is usually platy in shape. The size for a platy particle generally ranges from 0.01 to

1 lm depending on the clay type (e.g., montmorillonite, illite or kaolinite). Clay particles attract each

other due to surface forces among particles such as chemical, electrostatic, van der Waals forces, etc.

These forces pull together the particles to form particle-clusters. The size of the clusters continues to

grow until the clusters are large enough so that the cluster weight, due to gravitation, becomes signif-

icantly larger than the inter-particle surface forces. At this stage, the cluster looses its potential to

attract further clay particles, and the size of clusters stops to grow. The ultimate cluster size depends

on the clay particle type, the liquid inside the pores, and its sedimentation history.

From the photos of clay material under scanning electron microscopes, clusters formed by platy

clay particles can be identified as rotund shape, although the microfabric within a cluster may be

either a flocculate or dispersed type structure (Hicher et al., 2000).

At the size of clusters, long range forces such as electrostatic and van der Waals forces are negligi-

ble, and clusters interact with each other mainly through mechanical forces. Thus, clay material,



considered as a collection of clusters, can be modelled by analogy to granular material. This explains

why sand and clay have similar qualitative behaviour even though each material consists of different

constituents (Biarez and Hicher, 1994).

The present model is extended from the sand model developed by Chang and Hicher (2005). In this

model, clay is envisioned as an aggregate of clusters. The deformation of a representative volume of

thematerial is generated bymobilizing and compressing all clusters. Thus, the stress–strain relationship

can be derived as an average of the deformation behaviour of local contact planes in all orientations. For

contact planes in the ath orientation, the local forces f aj and the local movements dai can be denoted as

follows: f aj ¼ ff an ; f
a
s ; f

a
t g and dai ¼ fdan; d

a
s ; d

a
t g, where the subscripts n, s, and t represent the components

in the three directions of the local coordinate system as shown in Fig. 1. The direction outward normal

to the plane is denoted as n; the other two orthogonal directions, s and t, are tangential to the plane.

2.1. Density state of clay

One of the important elements to consider in modelling clay behaviour is the critical state concept.

At critical state, the clay material remains at constant volume while it is subjected to a continuous dis-

tortion. The void ratio corresponding to this state is termed critical void ec, which is a function of the

effective mean stress p = (rx + ry + rz)/3 (all stress terms used in the part of constitutive model refer to

effective stress). The relationship has traditionally been written as follows:

ec ¼ ec0 � k ln
p

pcr0

� �

ð1Þ

The two parameters (ec0,pcr0) represent a reference point on the critical state line. For convenience, the

value of pcr0 is taken to be 1 kPa. The critical state line can be defined by two parameters ec0 and k.

Using the critical state concept, the density state of an assembly under a given mean effective stress

is defined as the ratio e/ec, where e is the void ratio of the assembly and ec the critical void ratio at the

same given stress state.

The relationship between void ratio and isotropic stress in semi-log scale (e–logp) is assumed to be

linear. However, some investigators prefer to use a linear relationship between logev–logp for clay

with large deformation (Hashiguchi, 2008).

2.2. Inter-cluster behaviour

Since contact forces and applied stresses have different units, it is troublesome to compare their

magnitudes. Thus, local stresses and local strains are introduced for convenience. We define a local

stress sai and a local strain cai , which are directly related to the local force f aj and the local movement

dai at each contact, given by

Fig. 1. Local coordinate at inter-particle contact.



sai ¼
Nl

a

3V
f ai ; cai ¼ dai =l

a
ð2Þ

where l
a
is the length of the branch vector, which joins the centroids of two contacting clusters. V is

the volume of the representative element. N is the total number of contacts. The form of the local

stress is derived from the static hypothesis given by Liao et al. (1997)

_f aj ¼ _rijAikl
a
k ð3Þ

where Aik is the inverse of fabric tensor Aik ¼
1
V

PN
a¼1l

a
i l
a
k

h i�1

For the case of an isotropic fabric, it can be

derived that Aik = 3V/(Nl2)dik, where dik is the Kronecker delta. In this case, Eq. (3) implies

rjin
a
j ¼ Nl

a
=ð3VÞf ai . Therefore, the local stress defined in Eq. (2) is equal in magnitude to the traction

resolved from the applied stress on the contact plane (i.e., sai ¼ rjin
a
j ) for an isotropic packing struc-

ture. It is to be noted that the local stress sai is not the true stress on the physical contact area between

the two clusters. It should be rather viewed as a normalized form of the contact force.

In the local coordinate system, the local stress and local strain are, respectively, denoted as

f san sas sat g and f can cas cat g. For convenience, we use the notation ra ¼ san for local normal stress

and the notation ea ¼ can for local normal strain in the following sections.

2.2.1. Elastic part

The inter-cluster behaviour can be characterized as the relationship between local stress and local

strain, given by

sai ¼ �kaijc
a
j ð4Þ

in which the stiffness tensor can be related to the contact normal stiffness, �kan , and shear stiffness, �kar ,

�kaij ¼
�kann

a
i n

a
j þ

�kar ðs
a
i s

a
j þ tai t

a
j Þ ð5Þ

The inter-cluster stiffness can be expressed as the form adopted for sand grains by Chang et al.

(1989), given by

�kan ¼ �kan0
ra

pref

 !n

; �kar ¼ krR�k
a
n ¼ krR�k

a
n0

ra

pref

 !n

ð6Þ

where ra is the local stress in normal direction, pref is the standard reference pressure taken as 1 kPa,

and krR is the ratio of shear to normal stiffness. �kan0; krR and n are material constants. The value of n is

found to be 0.33 for two elastic spheres according to Hertz–Mindlin’s formulation (1969). Based on

experimental measurements of elastic modulus under different confining stress, the value of n has

been found to be 0.5–1.0 for clay.

2.2.2. Plastic part

2.2.2.1. Shear sliding. Plastic sliding often occurs along the tangential direction of the contact plane

with an upward or downward movement (i.e., dilation or contraction). The dilatancy equation used

here is modified from the equation adopted for sand by Chang and Hicher (2005), given by

dep

dcp
¼ b

s
r
� tan/l

� � s
r

� �a

1�
e

ec

� �

ð7Þ

Themodified equation allowsmore flexibility inmodelling the performance of differentmaterial behav-

iour. In this equation, a, b, and/l are inter-cluster property constants; ec is the critical void ratio for the clay.

When thevoid ratio e is equal to the critical void ratio, zerodilationholds. It is noted that the statevariables e

and ec of the clay are at amacro-scale of the cluster assembly, which is used to regulate the dilation of indi-

vidual inter-cluster contacts. It is reasonable to consider themicro variable as a function of themacro-state,

because the inter-cluster behaviour is indeed influenced by the density state of the specimen.

In Eq. (7), /l is the inter-cluster friction angle, which in value is very close to the internal friction

angle measured at critical state. The values of a, and b can be calibrated from experimental measure-

ments of triaxial tests, which will be shown in the later section on numerical simulation.



Note that the shear stress s and the rate of plastic shear strain dcp in Eq. (7) are defined as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2s þ s2t

q

and dcp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdcps Þ
2 þ ðdcpt Þ

2

q

ð8Þ

The yield function is assumed to be of Mohr–Coulomb type, given by

F1ðs;r;j1Þ ¼ s� rj1ðc
pÞ ¼ 0 ð9Þ

where j1(c
p) is an isotropic hardening/softening parameter. The hardening parameter is defined by a

hyperbolic function in the j1–c
p plane, which involves two material constants: /p and �kp.

j1 ¼
�kp tan/pc

p

r tan/p þ
�kpcp

ð10Þ

When plastic deformation increases, j1 approaches asymptotically tan/p. For a given value of r,
the initial slope of the hyperbolic curve is �kp=r. Under a loading condition, the shear plastic flow in

the direction tangential to the contact plane is determined by a normality rule applied to the yield

function. However, the plastic flow in the direction normal to the contact plane is governed by the

stress-dilatancy equation in Eq. (7). Therefore, the flow rule is non-associated.

The value of �kp is found to be linearly proportional to �kn so that

�kap ¼ kpR�k
a
n ¼ kpR�k

a
n0

ra

pref

 !n

ð11Þ

The ratio kpR is a material parameter.

The internal friction angle /l is a constant for a given material. However, the peak friction angle, /p,

on a contact plane is dependent on the density state of neighbouring clusters, which can be related to

the void ratio e by

tan/p ¼
ec
e

� �m

tan/l ð12Þ

where m is a material constant (Biarez and Hicher, 1994).

In a loose structure, clusters can rotate more freely, preventing the inter-cluster shear force from

fully mobilizing the sliding resistance. The peak frictional angle /p is smaller than /l. On the other

hand, a dense structure provides a higher degree of interlocking, which requires more effort to mobi-

lize the clusters in contact. In this case, the peak frictional angle /p is greater than /l. When the dense

structure starts to dilate, the degree of interlocking relaxes. As a consequence, the peak frictional angle

is reduced, which results in a strain-softening phenomenon.

2.2.2.2. Normal compression. In order to describe the compressible behaviour between two clay clus-

ters, a second yield function is hence added. The second yield function is assumed to be as follows:

F2ðr;j2Þ ¼ r� j2ðepÞ for r > rp ð13Þ

where the local normal stress r and local normal strain ep are defined in Eq. (3). In analogy to the

macro volume compression behaviour, we express the hardening function j2(e
p) in a semi-logarithmic

form given by

j2 ¼ rp10
ep=cp or ep ¼ cp log

j2

rp

ð14Þ

where cp is the compression index for the compression curve plotted in the ep–logr plane. When the

compression r is less than rp, the plastic strain produced by the second yield function is null. Thus, rp

in Eq. (12) corresponds to the pre-consolidation stress in soil mechanics.

2.2.3. Elasto-plastic relationship

With the basic elements of inter-cluster behaviour discussed above, the final incremental local

stress–strain relation of the inter-cluster contact can be derived, including both elastic and plastic

behaviour, given by



_sai ¼ �kapij _caj ð15Þ

Since detailed derivation of the elasto-plastic stiffness tensor is standard, it will not be given here.

2.3. Stress–strain relationship

2.3.1. Macro–micro relationship

The stress–strain relationship for an assembly of clay clusters can be determined from integrating

the inter-cluster behaviour at all contacts. During the integration process, a relationship is required to

link the macro and micro variables.

In a micromechanical expression, following the Love–Weber formula, the stress increment _rij can

be obtained by adding the diatic product of the contact force and the branch vectors for all contacts

(Christofferson et al., 1981; Rothenburg and Selvadurai, 1981). In terms of local stress, it is

_rij ¼
1

V

X

N

a¼1

f aj l
a
i ¼

3

N

X

N

a¼1

saj n
a
i ð16Þ

In terms of the local stress on the ath contact plane defined in Eq. (2), the static hypothesis of Eq. (3)

becomes

_saj ¼ _rijB
a
ikn

a
k ð17Þ

where the tensor Baik in Eq. (17) is defined as Baik ¼ N=ð3VÞAikðl
a
Þ2:

Using the principle of energy balance, which states that the work done in a representative volume

element is equal to the work done on all inter-cluster planes within the element,

rij _uj;i ¼
1

V

X

N

a¼1

f aj
_daj ¼

3

N

X

N

a¼1

saj _c
a
j ; ð18Þ

Substituting the local stress in Eq. (17) into Eq. (18), the relationship between the strain of assem-

bly and inter-cluster strain is obtained

_uj;i ¼
3

N

X

N

a¼1

_caj n
a
kB

a
ik ð19Þ

where _cj is the local strain between two contact clusters, nk the unit vector of the branch joining the cen-

tres of two contact clusters, andN the total number of contacts, overwhich the summation is carried out.

Using Eqs. (15), (19), and (17), the following relationship between stress and strain can be

obtained:

_ui;j ¼ Cijmp _rmp ð20Þ

where

Cijmp ¼
3

N

X

N

a¼1

ð�kepjp Þ
�1nakn

a
nB

a
ikB

a
mn ð21Þ

The summation in Eq. (21) can be expressed by a closed-form solution for some limited conditions

such as the elastic modulus of randomly packed equal-size particles (Chang and Gao, 1995). However,

in an elastic–plastic behaviour, due to the nonlinear nature of the local constitutive equation, a numer-

ical calculation with an iterative process is necessary to carry out the summation in Eq. (21) (see

Chang and Hicher, 2005).

2.4. Summary of parameters

The material parameters are summarised as follows:

(1) Microstructural descriptions (two parameters)

- Contact number per unit volume, N/V and mean cluster size, d



(2) Inter-cluster properties (nine parameters)

- Inter-cluster elastic constants: �kn0; krR, and n;

- Inter-cluster friction angle: /l and m;

- Inter-cluster plastic compression index and plastic shear stiffness ratio: cp and kpR;

- Dilation constants: a and b

(3) Density state of the assembly (three parameters)

- Critical state for the soil: k and ec0
- Reference void ratio, e0, on the isotropic compression line at p = 0.001 MPa.

The size of a clay cluster d can be estimated from an electronmicroscopic scanning photograph. The

value of N/V is not easy to obtain directly from the clay experiments. According to the experimental

data by Oda (1977) for three mixtures of spheres, the contact number per unit volume can be approx-

imately related to the void ratio by

N

V
¼

12

pd3
ð1þ eÞe

ð22Þ

Here we use this equation as a first-order approximation to estimate N/V for clay by treating d as

the mean size of the clay clusters. It is noted that the value of contact number per unit volume changes

with void ratio. The evolution is accounted for during the deformation process.

The mean size d of the clay clusters is assumed to be 4 lm according to the observations from Scan-

ning Electronic Microscope (SEM) results on kaolinite (Hicher et al., 2000). The exponent n is generally

between 0.7 and 1.0 for clay, and a typical value of exponent m is 1. From an isotropic compression

test, four parameters can be determined; namely, e0, k,
�kan0, and cp. The void ratio e0 and k can be mea-

sured directly from the compression line. The values of �kan0 and cp can be calibrated from the slopes of

the compression and rebound curves. The other parameters /l, kpR, krR, a, b, and ec0 can be obtained

from drained triaxial tests (as shown later).

3. Test simulation and analysis

3.1. Review of experimental results

The anisotropic behaviour of a natural clay, Otaniemi clay in southern Finland, is presented herein

with reference to experimental results based on the work of Wheeler et al. (2003) and Karstunen and

Koskinen (2004). Otaniemi clay is classified as a high-plasticity clay with the following mineralogical

compositions: quartz 23%, feldspar 46%, illite 15%, chlorite 10%, and kaolinite 5%, determined at ETH

Zurich by Messerklinger et al. (2003). The tests on Otaniemi clay were all performed on samples taken

at depths of 3.4–4.7 m. Some physical properties of Otaniemi clay at this depth are presented in Table

1. Wheeler et al. (2003) indicated that there is a noticeable natural variation within this 1.2 m thick

clay layer.

To investigate the induced anisotropic behaviour and the resulting kinematic hardening of the yield

surface, 26 drained triaxial tests with different effective stress paths were selected (20 of them can be

found in Wheeler et al., 2003). All tests were conducted using conventional triaxial cells with devia-

toric force applied by dead weight loading for both compression and extension. Stress increments

were generally applied at daily intervals with the increment size depending on the requirements of

the individual test stage. Each test consists of two loading stages (see Fig. 2):

(1) At the first loading stage, the specimen is loaded in a drained condition at a constant value of g1
to a final stress state (p0

1; q1), and then unloaded with g1 unchanged (where g = q/p0, q = r1 � r3,

and p0 ¼ ðr0
1 þ 2r0

3Þ=3 for triaxial condition, with positive and negative g representing compres-

sion and extension tests, respectively).



(2) At the second loading stage, the specimen is again loaded in a drained condition at a different

constant value of g2 to another final stress state (p0
2; q2). All tests were classified in three series

of tests (see Table 2, Wheeler et al., 2003):

� Series A: The samples were first loaded at various values of g1 (ranging from �0.65 to 1.08) to a

given stress state, and then each sample was loaded at a suitable alternative value of g2 varying

from 0.09 to 0.74.

� Series B: The samples were first loaded at g1 = 0.75 to p0
1 ¼ 40 kPa, and then each sample was

loaded at a different value of g2 varying from �0.52 to 0.51. The clay is subjected in situ to a value

of g about 0.75.

� Series C: The samples were first loaded at g1 = 0.11 to p0
1 ¼ 45 kPa, and then at the second stage,

each of the samples was loaded at values of g2 varying from �0.58 to 0.83.

For Series B and C, the specimens were consolidated up to 40–45 kPa at the end of the first loading

stage. The stress is higher than the in situ overburden pressure, which helps to reduce the sample’s

non-homogeneities due to the sampling process.

3.2. Calibration of model parameters

To calibrate the model parameters, we selected two experimental tests: (1) isotropic consolidation

test (CID2241 listed in Table 2), and (2) an anisotropic consolidation test followed by an undrained

triaxial compression (CAUC2239). The calibrated list of parameters is given in Table 3a. The parame-

ters are calibrated based on the following process.

Parameter k = 0.46 was determined from the slope of the experimental consolidation curve (see

Fig. 3a). The inter-cluster friction angle /l is determined from the slope of the critical state line in

p0–q plane. A value of /l = 30� was determined from an undrained triaxial test (see Fig. 3b). A typical

value ofm = 1 is used. The value of pcr0 and ec0 can be determined from the state (stress and void ratio)

p'

q

loading with 1

unloading with 1

reloading with 2

Series A: 1 = [-0.65, 1.08]

2 = [0.09, 0.74]

Series B: 1 = 0.75

2 = [-0.52, 0.51]

Series C: 1 = 0.11

2 = [-0.58, 0.83]

Fig. 2. Schematic description for test Series A, B, and C.

Table 1

Physical properties of Otaniemi clay of depth 3.4–4.7 m (after Wheeler et al., 2003).

Index property Value

Water content, w (%) 85–130

Liquid limit, wl (%) 80–111

Plastic limit, wp (%) 26–29

Plasticity index, Ip 54–82

Percentage of particles <0.002 mm, C1% 65–83

Organic content, Hm (%) 0–0.7

Specific gravity, Gs 2.76–2.80

Undrained shear strength, cu (kPa) 6–9

Sensitivity, St 7–14

1420



corresponding to the critical state. The values of pref and e0 can be determined by an isotropic line,

where pref is 1 kPa with the point (pref,e0) appearing on the isotropic line (see Fig. 3a). Fig. 3c shows

a slight influence of krR and kpR on simulating the isotropic consolidation test which means krR and

kpR are not sensitive for IC test. Other parameters can be obtained by curve fitting, as shown in

Fig. 3d–i, as follows:

(1) Inter-cluster elastic constants: �kn0; krR and n;

The exponent n = 1 was considered which provides a linear j-line (unloading–reloading

curve in e–logp0 of the consolidation test). The value of �kn0 was determined from the j-line, as shown

in Fig. 3d. krR was determined from the ev–e1 (volumetric strain versus axial strain) curve of the iso-

tropic consolidation test (see Fig. 3e).

(1) Inter-cluster normal hardening rule: cp and r0
p0;

Table 2

Drained triaxial tests on Otaniemi clay.

Test number Depth (m) w (%) ei First loading Second loading

g1 p01 ðkPaÞ q1 ðkPaÞ g2 p02 ðkPaÞ q2 (kPa)

Series A CAD2260 4.03–4.14 97.8 2.73 1.08 33 32.4 0.1 150 15.3

CAD2463 3.47–3.59 119 3.43 1 37 37 0.3 100 30.3

CAD2464 3.64–3.76 114.9 3.26 0.89 38 33.8 0.33 101 33.8

CAD2261 4.03–4.14 92.5 2.62 0.79 37 29.2 0.1 150 15.4

CAD2530 4.03–4.14 101.4 3.1 0.6 40 20.32 0.32 71 22.5

CAD2251 4.20–4.31 90 2.51 0.6 40 24.1 0.09 150 14.1

CAD2280 4.37–4.48 93.6 2.54 0.51 50 25.4 0.1 120 12.5

CAE2586 3.62–3.73 112.4 3.23 0.43 44 �18.8 0.51 96 49.2

CAD2276 4.56–4.68 79.4 2.59 0.26 48 12.4 0.11 150 15.9

CAD2514 4.23–4.34 85.4 2.98 0.21 36 7.5 0.74 60 44.5

CAE2496 4.20–4.31 93.5 2.54 �0.34 31 �10.5 0.1 66 6.7

CAE2544 4.37–4.48 88.1 2.98 �0.6 33 �19.8 0.51 66 33.7

CAE2513 4.03–4.14 104.7 2.91 �0.65 29 �18.8 0.61 60 36.8

CID2241 4.02–4.14 105 2.81 0 151 0 0.11 201 22.5

CID2515 4.40–4.51 92 2.2 0 60 0 0.6 100 60

CID2291 4.37–4.48 100.4 2.86 0 37 0 0.1 116 12

CID2403 3.62–3.73 114 3.3 0 42 0 0.42 99 42

Series B CAD2443 4.23–4.34 89.1 2.56 0.75 40 30 0.51 100 51

CAD2425 4.06–4.17 101.5 3.01 0.22 97 21

CAE2529 4.37–4.48 84.1 2.50 �0.26 78 �20

CAE2522 4.12–4.23 101.1 2.74 �0.52 60 �31

Series C CAD2424 4.03–4.14 108.5 3.10 0.83 60 50

CAD2423 4.20–4.31 94.4 2.61 0.58 99 57

CAD2422 4.05–4.17 102.8 2.93 0.11 45 5 0.11 100 36

CAE2561 3.95–4.06 101.1 2.93 �0.45 87 �39

CAE2550 4.32–4.43 90.8 2.63 �0.58 84 �49

Table 3

Values of model parameters for Otaniemi clay.

Parameters Global parameters Inter-particle parameters

e0 k ec0 r0
p0 ðMPaÞ Cp /0

l (�) �kn0 ðMPaÞ krR kpR

a. CID2241 3.95 0.460 3.64 0.02 0.064 30 300 0.5 0.2

b. CID2291 4.36 0.595 3.91 0.021 0.08 30 380 0.5 0.2

c. CID2403 5.34 0.764 4.78 0.023 0.089 30 500 0.5 0.2

d. CID2515 3.43 0.437 3.12 0.03 0.068 30 290 0.5 0.2

Average 4.27 0.564 3.86 0.0235 0.075 30 368 0.5 0.2



The value of cp was determined by keeping the isotropic consolidation line parallel to the critical

state line (see Fig. 3f). The initial value of the pre-consolidation pressure r0
p0 due to the clay deposition

history was determined, as shown in Fig. 3f.

(1) Inter-cluster shear hardening rule: kpR;

The value of kpR was determined from the q–e1 curve of an undrained compression test at small

strain, as shown in Fig. 3g.

(1) Dilation constants a and b were determined from an undrained compression test (see Fig. 3h

and i); from this curve, combined values of a and b can be chosen by curve fitting. Parameters

a and b governing the amount of volumetric dilation have a significant influence on the peak

strength of the q–e1 curve. Fig. 3h shows that different effective stress paths, with a similar

shape of the yield curve, can be described by different values of a and b.
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Due to the large variation in the characteristics of the samples, three additional isotropic consoli-

dation tests were selected to determine the model parameters by using the same procedure of calibra-

tion. All determined parameters and the averaged parameters are summarised in Table 3. The average

parameters were used to simulate isotropic consolidation test and compared with all data from the

four experimental results in Fig. 4b. The average parameters were also used to simulate the undrained

triaxial compression tests and compared with experimental results as shown in Fig. 4c. The same set of

parameters is also used to simulate drained triaxial compression tests for both normal and over con-

solidated Otaniemi clay as shown in Fig. 4d and e. Unfortunately, the experimental results on drained

triaxial compression tests from Otaniemi clay at this field site are not available for comparison with

the model simulation. However, the simulation appears to capture the main features of the drained

triaxial compression behaviour for general clay. Thereby, the average values of the parameters seem

to be suitable for representing the average properties of tested samples from Otaniemi clay.

3.3. Test simulation and microstructural analysis

In this section, three different cases of consolidation tests, namely g1 = g0, g2 < g1, and g2 > g1
were analysed by means of the micromechanical approach, where g0, g1, and g2 correspond to,

respectively, the clay deposition, the first, and the second stages of loading. These tests are selected

from Table 2.

The simulation of each test begins with a consolidation loading with g0 = 0.75, which corresponds

to the K0 condition in the field. Along this stress path, the specimen is loaded to p0 = 15.7 kPa and

q = 11.75 kPa, which is equivalent to an effective overburden stress 23.5 kPa at 4 m depth below

ground. This process is used to simulate clay deposition in the field, as shown in the upper part of

Fig. 5a, marked by points a, b, c. The corresponding points on a e–logp0 curve are shown in Fig. 5b.
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Then, the specimen is unloaded to a very small stress value, along the path of g = 0.75. This is a sim-

ulation of the sampling process, in which the sample is extracted from 4 m depth to the ground sur-

face, as the rebound curve shown in Fig. 5a and b, marked by c, d. Point 1 corresponds to the state of

the specimen to be used in the laboratory for the first stage loading test.

The first stage loading is then simulated. The specimen is loaded with a constant g1 to a pressure

greater than the point of p0 = 15.7 kPa and q = 11.75 kPa, as shown in Fig. 5a and b, marked by 1, 2, 3,

and 4. The specimen is again unloaded to a very small value, along the path of g1. The rebound curve is

marked by points 4 and 40.

Subsequently, the second stage loading is performed. The specimen is loaded with a constant g2 to
a pressure greater than that of point 4 (i.e., the ending point of the first loading stage), as shown in Fig.

5a and b, marked by points 5, 6, 7, 8, and 9. At this point, the simulation is completed.

For each test, the simulation results of e–logp0 curves are compared with the experimental data to

evaluate the suitability of the model. The apparent yield points obtained from the experiments are

also compared with those obtained from the predicted curves.

Inaddition, the local stress–strainbehaviourat contactplanesofvariousorientations is alsoplotted for

analyses. The detailed plots for contact planes of various orientations will be described in a later section.

3.3.1. Case 1: g1 = g0
Four consolidation tests (Series B in Table 2) along the K0-consolidated stress path (g1 = g0 = 0.75)

were simulated. After the clay deposit simulation along g0 = 0.75, the first and second loading stages

were then simulated. In this case we focus only on the results of the first loading stage, which are plot-

ted in Fig. 6 and compared with experimental results. Good agreement between the experimental data

and the simulation was achieved for the ev–logp
0 curves. The apparent yield point can be obtained

from a linear plot of ev–p
0 curve using a bilinear construction method as suggested by Mitchell

(1970) and Karstunen and Koskinen (2008). The ev–p
0 plot is shown in Fig. 6b for both model simula-

tion and experimental results. The yield points determined from both model simulation and experi-

mental results are very close for this case.

The model simulation for the behaviour on the contact planes are also plotted to show the relations

between the representative element and the different contact planes. Since the loading is symmetric

around the z-axis, the orientation of a given contact plane can be defined by an inclined angle h which

is between the branch vector and the z-axis of the local coordinate system, as shown in Fig. 5a. The

angles h selected are 0�, 18�, 28�, 45�, 55�, 72�, and 90� (h = 0� corresponds to a horizontal plane), as

shown in the x–z plane (Fig. 5c).

Fig. 7 shows the local stress–strain relationships for the contact planes in the selected orientations.

The local stress paths are plotted in the s–r plane, as shown in Fig. 7a, for both the clay deposition
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stage and the first loading stage. The local stress paths are different from one contact plane to another,

under the load applied to the specimen. The shear component becomes more significant when the

plane is more inclined. The maximum slope is near the planes oriented at 55�. No shear component

is generated for the horizontal and vertical plane contacts (0� and 90�). For the selected planes, the

slope of the local stress path increases from plane orientation 0� to 55� and decreases from 55� to 90�.

In the local normal stress–strain curves (see Fig. 7b), contact planes of all orientations yield simul-

taneously when the load p applied to the specimen reaches its yield point (i.e., 15.7 kPa as shown in

Fig. 6a and b). The elastic limits decrease from plane orientation 0� to 90�. These elastic limits were

created due to the previous load applied to the specimen during the clay deposition. In the local shear

strain versus normal strain curves (see Fig. 7c), the amount of shear strain agrees with the slope of the

local stress path, i.e., the larger slope leads to a larger shear strain.

In Fig. 8, the distribution of local stresses and strains versus plane orientations (in rose diagram) are

plotted for the ending step c for the clay deposit stage and the selected steps 1, 2, 3, and 4 for the first

loading stage (see Fig. 5a and b).

It is noted that the normal stress r and shear stress s distributions due to the clay deposition show

a difference in all orientations, thus creating induced anisotropy of this material. This may lead to an

irrecoverable microstructure alteration, thus producing and the inherent anisotropy.

The distributions expand in size from step 1 to 4 while keeping the same shape (see Fig. 8a and b).

Originally, the distribution of normal stress r is a point representing zero stresses in all directions. At

the end of the clay deposition (step c in Fig. 5a and b), the distribution expands to the location of the

bold line plotted in Fig. 8a. This location represents the pre-consolidation pressures of all contact

planes. During the sampling (c, d in Fig. 5a and b), the distribution shrinks to the point of origin as

an unloading process. Then, it expands again during the first loading stage. At step 3, the distribution

reaches the bold line. It is noted that, during steps 1, 2, and 3, all contact planes are elastic until the
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distribution reaches the bold line. Then, all contact planes reach their pre-consolidation pressures

simultaneously, and all planes begin to behave plastically, which can also be seen in Fig. 7b. At this

point, the sample behaviour displays a sharp change in direction in the ev–logp
0 as shown in Fig. 6a,

representing the apparent yield point of the soil sample.

Fig. 8c shows the stress ratio at contact in all orientations. The elastic limits have not been

exceeded in the first loading stage. Hence, small shear strains are expected.

Fig. 8d shows the distribution of normal strain, which implies slight differences in strains occurring

for different plane orientations as shown in Fig. 7b. From step 3 to 4, the strain increases much higher

than from step 2 to 3 due to the plastic strain occurring after the stresses reach the elastic limit. As for

the distribution of shear strain in Fig. 8e, the shear strain from steps 3 to 4 does not show much dif-

ference in magnitude change from step 2 to 3, because the shear stresses are still in the elastic range.

3.3.2. Case 2: g2 < g1
Three selected consolidation tests (Series B in Table 2) after an identical g1 = 0.75, g2 takes three

different paths, 0.51, 0.26, and �0.52 as shown in Fig. 9. Simulation for each test includes sequentially

the clay deposition g0 = 0.75, the first stage loading g1 = 0.75 and the second stage loading g2. Since
g1 = g0 = 0.75 has already been presented in case 1, we focus here on the behaviour during the second

loading stage. General agreement between the experimental data and simulations was achieved for

the ev–logp
0 curves, as shown in Fig. 10a. Unlike case 1, the curve does not follow a bilinear pattern;

instead, a smooth transition zone was found on the ev–logp
0 plane at the location of the pre-consoli-

dation stress (see Fig. 10a). The apparent yield point can be determined from the plots by using a bilin-

ear construction method, as indicated in the previous case (see Fig. 10c and d). Although the yield

points determined from simulation are in good agreement with the experiments, the curves from

experiments show a wider scatter which can be attributed to the variability of the sample is initial

void ratio while the prediction was made based on an averaged set of parameters.
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Among the three tests, g2 = �0.52 was selected in order to study the response on the contact

planes. Fig. 11 shows the local stress–strain relationships for the contact planes in the selected orien-

tations. The local stress paths are plotted in the s–r plane as shown in Fig. 11a for both the first and

the second loading stage. The highest slope of the local stress paths is obtained for planes oriented at

55� for the first loading stage and is for planes oriented at 45� for the second loading stage. For the

second loading stage, the slope of the local stress path increases from plane orientation 0� to 45�

and decreases from 45� to 90�.

In the local normal stress–strain curves (see Fig. 11b), only planes with orientation from 45� to 90�

yielded. The planes with orientations from 0� to 45� did not yield even at the end of the second loading

stage. Fig. 11c shows the local shear strain versus normal strain curves, the magnitude of local shear

strain is greater for the stress paths with higher slopes on the r–s plane.

Fig. 12 shows the distribution of local stresses and strains in rose diagrams for the ending step 4 of

the first loading stage and the selected steps 5, 6, 7, 8, and 9 for the second loading stage (see Fig. 5a
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and b). It is noted that step 4 gives the pre-stresses on each contact plane at the end of first stage

loading.

The distribution of normal stress at the end of the first loading stage (step 4) has a long axis in the

vertical direction. During the sampling (4–40 in Fig. 5a and b), the distribution shrinks to the point of

origin as an unloading process. Then, it expands again during the second loading stage from step 5 to

9, but with a different shape that has the long axis in the horizontal direction (see Fig. 12a). The change

in shape of the distribution is due to the load pattern, changing from compression to extension (from

g1 = 0.75 to g2 = �0.52).

At step 6 of the second stage, the distribution reaches the bold line only for planes with near-hor-

izontal orientations. Only these planes, after reaching their pre-consolidation pressures, begin to

behave plastically. At steps 7, 8, and 9 the number of planes that reached their pre-consolidation stress

(i.e., went beyond the bold line) continues to increase. At step 9, there are still nearly half of the planes

which behave elastically, which is consistent with Fig. 11b which shows that all the contact planes

with less than 45� orientation did not yield. Thus, the soil has a smooth transition zone when it begins

to yield in the curve ev–logp
0, as shown in Fig. 10a, making it more difficult to define the apparent yield

point based solely on globally applied stresses. It demonstrates that in this case, the first contact plane

yields long before the apparent yield point determined from the bilinear construction, while many

contact planes are still in the elastic state after the apparent yield point.

This case also shows that, due to a change of the loading path direction, the shape of the normal

stress distribution can rotate around its principal axis, which indicates that the induced anisotropy

involves not only the degree of anisotropy but also the axis of anisotropy.

Fig. 12b shows the distribution of shear stress and Fig. 12c shows the distribution of shear to nor-

mal stress ratio s/r, which governs the shear deformation. The distributions show that after the sec-

ond loading stage, there are a small number of contact planes (below 45� orientation) which exceed

the elastic limits created by the first loading stage.

Fig. 12d shows the distribution of local normal strains which indicates very small strains for con-

tact planes having an orientation below 45�. For orientations greater than 45�, however, the planes

display large normal strains due to their exceeding of the local elastic limit at early steps during this

loading stage. Fig. 12e shows the shear strain distribution for the steps 6, 7, 8, and 9 of the second

loading stage. The magnitude of shear strains is relatively small because most of the contacts are still

in the elastic range at step 9.

3.3.3. Case 3: g2 > g1
Three selected consolidation tests (Series C in Table 2) are considered in this case. After an identical

first loading path g1 = 0.11, three different second loading paths occurred are followed g2 = 0.36, 0.58,

and 0.83 as shown in Fig. 13. Simulation for each test includes, sequentially, the clay deposition

g0 = 0.75, the first stage loading g1 = 0.11 and the second stage loading g2. Particular attention was

given to the second loading stage. Fig. 14a shows the ev–logp
0 curves, and Fig. 14b the ev–ed plane.
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Fig. 12. Schematic plot for induced anisotropy for g2 = �0.52.



Similar to case 2, an obviously smooth transformation zone was found on the ev–logp
0 plane, when the

pre-consolidation stress was located. The apparent yield points determined from plots using a bilinear

construction method are shown in the ev–p0 plane in Fig. 14c and d.

Among the three tests, g2 = 0.83 was selected for studying the contact planes. Fig. 15 shows the

local stress–strain relationships for the contact planes in the selected orientations. In Fig. 15a, the

s–r curves are plotted for both the first and the second loading stages. The slopes of the s–r curves

for the second loading stage (g2 = 0.83) are much higher than those for the first loading stage

(g1 = 0.11).

In the local normal stress–strain curves, at the second loading stage (Fig. 15b), the elastic limits

were reached for all planes except for the plane oriented at 90�. The magnitude of the normal stress

decreases with the orientation angle caused by the stress distribution. In the local shear strain versus

normal strain curves (Fig. 15c), the magnitude of local shear strain is greater for stress paths with

higher slopes in the r–s plane. It is also noticeable that the shear strain in this case is larger than

in the previous two cases.

Fig. 16 shows the distribution of local stress and strain in rose diagrams for step 4 of the first load-

ing stage and the selected steps 5, 6, 7, 8, and 9 for the second loading stage (Fig. 5a and b). The bold
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line shows the stresses at step 4 at the end of the first loading stage, which also represents the elastic

limits for the second loading stage.

Corresponding to the near isotropic consolidation of the first loading stage (g1 = 0.11), the bold line

has a shape close to a circle with its long axis in the vertical direction. The distribution of the second

loading stage (g2 = 0.83), however, has a shape much elongated in the vertical direction (Fig. 16a).

When distribution starts to expand from origin during the second loading stage, it reaches the bold

line (elastic limits) at first for planes with near-vertical orientations at step 6. At steps 7, 8, and 9,

the distribution expands further beyond the bold line. At the end of step 9, all planes yield, except

for the planes with orientations near 90�, which is consistent with Fig. 15b showing that all contacts

yield except for the one with a 90� orientation. The yielding process is also stretched over several load

steps, thus the soil has a smooth transition zone when it begins to yield in the ev–logp
0, as shown in

Fig. 14a. It can be concluded that for the case of changing stress paths (stress path with various suc-

cessive slopes g), the yielding condition does not occur simultaneously for all contact planes. There-

fore, determining the yielding point from the test results at the macroscopic level becomes more

difficult. This case also confirms that loading with reorientation of the stress path induces a change

in the degree of anisotropy as well as in the direction of the anisotropy axis.

The fact that yielding condition does not occur simultaneously for all contact planes is a fundamen-

tal phenomenon for granular material. In fact, the result can be used to explain the incrementally non-

linear character of the material. As pointed out by many authors (Hill, 1965, 1966, 1967; Zienkiewicz

and Pande, 1977; Bazant and Gambarova, 1984; Darve and Nicot, 2005), the mechanical state (elastic

or plastic regime) of each contact depends on both the direction of the macroscopic loading and the

orientation of the contact considered. As a consequence, the overall response corresponds to the

(a) Normal stress 

Elastic limit due to 

1 = 0.11
from step 5 to 9

Plastic state

(b) Shear stress 

Elastic limit due to 
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all steps for 
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(d) Normal strain 
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(e) Shear strain 
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Fig. 16. Schematic plot for induced anisotropy for g2 = 0.83.
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contribution of the individual response of all the contact directions. A very complex, nonlinear and

anisotropic behaviour is therefore obtained.

Fig. 16b shows the distribution of shear stress and Fig. 16c shows the distribution of shear to nor-

mal stress ratio s/r. The distributions show that after the second loading stage, all planes exceed their

shear elastic limits.

Fig. 16d shows the distribution of local normal strains which indicates very small strains for con-

tact planes with near-horizontal orientation. Contact planes with near-vertical orientations, however,

display large normal strains due to their stresses beyond the initial elastic limits. Fig. 16e shows the

shear strain distribution for steps 6, 7, 8, and 9 of the second loading stage. The magnitude of shear

strains is relatively larger than in the previous two cases (see Fig. 15c) because the shear elastic limit

is exceeded in contact planes of all orientations.

3.4. Investigating the macro apparent yield curve

As described in the previous section, the yield point is only an approximate description of the stress

state, which serves as the elastic/plastic boundary for the material. Since the material cannot change

its behaviour from elastic to plastic abruptly (i.e., contact planes are likely to yield in a sequential pro-

cess), the yield point can be only approximately defined. The method used for determining the

approximate yield point is a bilinear construction. In this section, the same method is used to con-

struct the yield curve in a stress plane, as well as its kinematic rule based on the simulation of triaxial

drained tests with different g-stress paths for the Otaniemi natural clay.

3.4.1. Initial apparent yield curve

In order to investigate the apparent yield curve of Otaniemi natural clay under clay deposition,

drained tests of all series were simulated using the calibrated model parameters. Figs. 17 and 18 show

the comparison between experimental results and model predictions for the full range of test stages

for Series A and B–C, respectively. A general agreement was achieved for all test simulations compared

to experiments. The under-prediction of volumetric strains during the first loading stage at high val-

ues of g (e.g., CAD2260, CAD2464, CAD2261), as noted by Wheeler et al. (2003), can be attributed to

the breakage of bonds among the clay clusters, which is not considered in the present microstructural

model.

The apparent pre-consolidation pressures were measured by the bilinear method for all stress

paths of the first loading stage. The initial apparent yield curve of Otaniemi natural clay in the nor-

mally consolidated region was then obtained, as shown in Fig. 19a. Considering the sample variability,

the experimental data are scattered around the predicted results. The yield curve constructed from the

results of the numerical simulations is approximately an elliptical shaped curve with a highest value

of the mean effective stress lying approximately on the line g = 0.75.

3.4.2. Kinematic hardening of the macro apparent yield curve

As investigated in the previous section, a change of stress history (g2 – g1) would redistribute the

local stresses and strains, resulting in a change of the anisotropy axes. In a conventional plasticity

model, the change of the anisotropic axes would be reflected by a change of the yield surface shape,

and would require a kinematic hardening rule to model such behaviour.

Drained tests with different g stress histories were simulated to construct the kinematic hardening

of the yield curve. The g value of the first loading stage varies from 0.98 to �0.34, using tests of Series

B for g1 = 0.75 along natural deposition stress path, CAD2260 for g1 = 0.98, Series C for g1 = 0.11,

CID2515 for g1 = 0 and CAE2496 for g1 = �0.34. All tests were simulated by the microstructural model,

as shown in Figs. 17 and 18. General agreement was achieved for the experimental and numerical

results.

Fig. 19b–f shows the apparent yield surfaces for different consolidation histories described by

the microstructural model. All yield curves have different shapes, which are approximately of ellip-

tical type with a highest value of the mean effective stress lying approximately on the line of the

g1 stress path. In Fig. 19b, the stress path of the first loading stage is the same as that of the clay

deposition (i.e., g1 = g0 = 0.75). For this case, the yield surface moves and expands while keeping



the same shape. Fig. 19c–f shows cases with g1 – g0. After the stress path g1 is applied, the yield

surface has not only moved but also changed its shape. The change in shape depends on the value

of g1. The data plotted in Fig. 19b–f, corresponding to the final yield surface, are obtained from the

second loading stage in the test series. The constructed yield surfaces are compared to experimen-

tal results, when available, as shown in Fig. 19a–f. Considering the soil variability, the comparison

shows a reasonably good agreement. The micromechanical approach seems capable of describing

adequately the kinematic hardening of a yield curve in the stress space.

4. Summary and conclusion

A microstructural model for clay based on the approach proposed by Chang and Hicher (2005)

has been used to simulate the multistage drained constant – g tests on Otaniemi clay. The pur-

pose of this study was to investigate the induced anisotropy due to various combinations of

stress paths. It was attempted to link the mechanisms at inter-cluster contacts to the apparent
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yield surface and its kinematic hardening in the stress space. Three different cases have been

studied:

(1) For the case g1 = g0, the e–logp0 curve for the first loading stage is bilinear and the yield point is

obviously situated at the intersection point of the two lines. When the applied stress reaches the

pre-consolidation stress, all contact planes reach their pre-consolidation pressures simulta-

neously, and therefore they all begin to behave plastically.

(2) For the cases g2 < g1 and g2 > g1, the e–logp0 curve for the second loading stage is no longer

bilinear, instead there is a smooth transition zone. In this case, the apparent yield point is deter-

mined by the bilinear construction method proposed by Mitchell (1970). When the applied

stress reaches the pre-consolidation stress, not all contact planes reach their pre-consolidation

pressures simultaneously. The number of yield contacts increases with applied load but some

contacts are likely to remain elastic. The cause of this phenomenon is easily detected from

the evolution of the local stress distribution for contacts of various orientations.

It can be concluded that for the case of stress paths with various successive directions, the yielding

condition does not occur simultaneously for all contact planes. Therefore, the definition of yield

becomes vague for the traditional plasticity theory, where the yield point occurs at a given applied

stress.

It can also be concluded that, due to a change of loading path, the principal axis of the contact stress

distribution can rotate, which indicates that the induced anisotropy includes not only the degree of

anisotropy but also the principal axes of anisotropy.

Under the microstructural approach, the evolution of the state variables (local stress and strain) in

the planes of all orientations is tracked. This leads to an account of anisotropy on stress-dependent

properties, and can produce naturally the anisotropic behaviour without specifying a kinematic hard-

ening yield surface in the stress space.

Given the good agreement between the numerical simulation and the experimental results, the

micromechanical approach seems capable of modelling adequately the induced anisotropic behaviour

of Otaniemi clay.
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