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I. INTRODUCTION

The crystalline state is fundamental in nature and hugely

important in modern technology. Moreover, molecular simu-

lation is increasingly used to understand and predict the

properties of matter. Yet, despite this, molecular simulation

techniques for classical crystals are, overall, not as satisfac-

tory as those for fluids, and, in particular, there is some con-

fusion in the literature as to how confined crystals can be

simulated correctly. Recently, two papers,
1,2

called papers 1

and 2 here, have made some progress in this area. In paper 1

it was shown how the Gibbs ensemble can be used to simu-

late coexistence between a crystalline solid phase and an-

other phase without simulating any interface. Central in that

work, and to the problem of simulating crystals generally, is

calculation of the free energy. This problem was addressed in

paper 2.

It is even more important to know the free energy for

confined crystals than for confined fluids. This is not just

because phase transitions involving crystalline solids are of-

ten strongly first order and associated with significant

hysteresis—a particular problem with simulations. It is also

because we cannot impose or measure the bulk �i.e., experi-

mental� pressure when simulating confined crystals, unless

an impractically large system is simulated that includes the

confined system—bulk system interface. Instead, it is essen-

tial that the chemical potential of the confined crystal is

known �imposed or measured� because this quantity is the

same in the confined and bulk systems at equilibrium. Un-

fortunately, we cannot impose the chemical potential on

simulated crystals by performing grand-canonical ensemble

simulations. The reason for this is explained in detail later.

Instead, we should perform simulations that allow the crystal

to relax to an equilibrium state, and then seek to measure the

chemical potential of the crystal. For crystals confined in

uniform slit pores, for example, simulations at constant in-

terfacial tension �N�T� are appropriate. For a pure system

the chemical potential is then simply the Gibbs free energy

per particle in the N�T ensemble. So for simulation studies

of confined crystals calculation of the Gibbs free energy is

essential if conditions inside the pore are to be related to

experimental �or bulk� conditions, regardless of whether

phase behavior is of interest or not. Unfortunately, standard

free energy calculation techniques
3

for classical crystalline

solids are not very satisfactory when applied to confined

crystals.

Paper 2 described a radical technique, based on the self-

referential �SR� method, for calculating the free energy of

crystalline solids. However, as described in more detail be-

low, despite some appealing properties the particular SR

technique used in paper 2 was inefficient and not very con-

venient. For example, one needed to �a� perform two differ-

ent kinds of special simulation �called “replication” and “re-

laxation” stages�, �b� estimate an initial pressure and

temperature, through optimization or trial and error, for the

relaxation stage, and �c� use Monte Carlo simulation. This

present work resolves all these issues, largely by implement-

ing thermodynamic integration. But before discussing this

work, let us turn to the fundamental problem in simulating

crystals.

A. The problem with simulating crystals

The following discussion refines arguments put forward

in paper 2. We know, by considering density functional

theory, for example, that for specified external constraints

�temperature, chemical potential, external potential, etc.� that

only one “density profile,” or singlet density, represents the

equilibrium state. So, for a simulated crystal to reach equi-

librium it must be able to adjust its density profile, �provided

it is not somehow initiated in this state�, i.e., it must be able

to adjust its lattice site density, or lattice spacing, in response

to external conditions. In grand-canonical simulations
3,4

vol-

ume is fixed and equilibrium is achieved by fluctuations in

particle number in response to an applied chemical potential.

However, when simulating a space-filling crystal this kind of

fluctuation does not lead to a change in the average lattice

spacing. It leads only to defects, so it is the wrong kind of

fluctuation and hence the system does not achieve equilib-
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rium. This happens because of a conflict in symmetry re-

quirements at fixed volume. If the system were fluid instead,

i.e., if it did not have crystalline symmetry, then this would

not happen—the right kind of fluctuations could occur, even

with periodic boundaries, in response to an applied chemical

potential. Likewise, if a crystal simulation at fixed volume,

somehow, did not employ periodic boundaries then, again,

this would not happen—the correct kind of fluctuation could

occur in response to an applied chemical potential. So it is

the combination of periodic boundaries and crystal symmetry

that is the root cause of difficulties when simulating confined

crystals at fixed volume.

Of course, for a space-filling crystal fluctuations in indi-

vidual box lengths can be achieved at fixed volume by short-

ening one box length while simultaneously lengthening an-

other or by adjusting vertex angles. However, in this case

lattice spacing in one direction is traded against another, and

although the crystal might be able to relax somewhat, this

will still not allow full relaxation to the equilibrium spacing

in each direction because these fluctuations do not occur in

response to the applied chemical potential. That is, changing

the chemical potential will have no significant effect on the

system except to alter the density of defects.

The same problem arises with standard Gibbs ensemble

simulations
3,5,6

involving crystalline solids. Once again, the

crystalline phase must be able to adjust its average lattice site

density so that the chemical potentials of the two simulated

phases are equilibrated. Although the lattice spacing can ad-

just so that pressure is equilibrated, it cannot adjust in re-

sponse to particle exchanges which are responsible for

equilibrating chemical potential. Any particle exchanges that

do occur must result in creation or annihilation of defects,

which by themselves do not create any change in the average

lattice spacing. This problem was resolved in paper 1 by

creating a free energy model for the crystal phase. Finally,

the same problem also occurs, when the surface area is fixed,

for space-filling two-dimensional �2D� crystals �i.e., crystals

formed on a surface� and for 2D crystal layers that form on

the inner surfaces of a slit pore in contact with a fluid phase

that fills the middle of the pore.

Note that the symmetry conflict is not a finite-size effect,

i.e., this problem is not automatically resolved by simulating

a sufficiently large system because no matter how large the

system, one cannot guarantee that it will be initiated with the

correct lattice site density, and fluctuations in the lattice spac-

ing cannot usually be made to occur at fixed volume in re-

sponse to an applied chemical potential. However, a strategy

is conceivable that will allow fluctuations in the lattice spac-

ing to occur �at fixed volume� in response to an applied

chemical potential. One can imagine a composite Monte

Carlo move that simultaneously adjusts crystal lattice spac-

ing, adjusts box lengths in each direction and vertex angles at

fixed volume, and adds �or deletes� entire crystal unit cells to

the crystal phase. However, we are not aware of any such

move applied in the literature—although Tilwani’s retiling

algorithm
7

accomplishes a similar feature in the context of

Gibbs ensemble simulations of 2D hard disks. Note, how-

ever, that this retiling technique cannot be applied to general

space-filling three-dimensional crystals because, generally,

single particle number fluctuations would not occur �gener-

ally, many particles would simultaneously be created or de-

stroyed in the crystal phase when an entire unit cell is added

or deleted�, yet the partition function for the grand-canonical

and Gibbs ensembles demands single particle fluctuations.

So this retiling technique can only be applied correctly for

crystals with single particle unit cells.

Of course, another problem when simulating dense

phases has to do with the probability of acceptance of inser-

tion and deletion moves, but this is only a practical problem

that might be tackled with sufficient computing resources or

clever algorithms.
3

The problem concerning the lattice site

density is more fundamental.

Despite all this, there are several examples
8–15

in the

literature where the grand-canonical ensemble has been used

to simulate space-filling crystalline solids and 2D crystals on

the inner surfaces of slit pores without box length fluctua-

tions. All this work should be considered carefully because

in every case these are not equilibrium simulations. So the

stated location of fluid-crystal phase transitions for bulk and

confined systems might not be precisely correct. In much of

this work a “Landau free energy” method is used which

gradually transforms a liquid phase into a crystal phase using

biased sampling. Although the liquid phase end point of

these simulations is in equilibrium with the imposed chemi-

cal potential, the crystal phase end point is not because the

crystal density is also influenced by the size and shape of the

simulation box, which is fixed arbitrarily in advance. With-

out further studies it is not possible to quantify the system-

atic error introduced by this technique; it will be different for

each case. Note also the simulations by Dominguez et al.
16

in

which crystalline solid free energies for a slit-pore system

are calculated using an ensemble in which the slit-pore area

is fixed, while fluctuations are allowed in slit width in re-

sponse to the fixed condition of transverse pore pressure.

Once again, these are not equilibrium simulations because

the lattice site density cannot adjust to the imposed condition

of fixed transverse pressure, i.e., the chemical potential of

their crystal will generally not correspond to the bulk �reser-

voir� chemical potential corresponding to the imposed trans-

verse pressure. We can expect that their free energy calcula-

tions and hence their predicted phase transition points are

dependent on their choice of slit-pore area �i.e., their choice

of initial lattice site density�.

B. The self-referential method

The aim of this present work is to develop a novel simu-

lation technique, based on the self-referential method, for

calculating the free energy of crystalline solids that is con-

venient and efficient. For the purpose of validation, we dem-

onstrate this technique using the same simple crystals as in

paper 2. Future work will aim to demonstrate that the self-

referential method is also versatile and robust by application

to molecular crystals. Ultimately, we aim to apply this tech-

nique to confined crystals so that the problems discussed

above might be resolved.

All simulation methods
3,17–25

that calculate free energies

for crystals actually calculate the free energy difference be-



tween the state of interest and a reference state for which the

free energy is known. The self-referential technique
2

is inter-

esting because it takes the crystalline solid of interest as the

reference state. So the only difference between the state of

interest and the reference state is their size—the reference

state has fewer unit cells. This has many advantages when

compared to other techniques. Other techniques use a con-

strained ideal gas �the single-occupancy cell method of Ree

and Hoover
26�, a liquid �the phase switching method of Wild-

ing and Bruce
22

calculates the free energy difference between

liquid and crystalline solid states, so if the liquid free energy

is known it can be used to calculate the absolute free energy

of the solid�, or an ideal crystal �the various techniques of

Frenkel and Ladd
20

and Meijer et al.
27

use an Einstein crys-

tal�. All of these techniques require integration of the free

energy along a path that connects the reference state with the

state of interest. Because the reference state is rather differ-

ent to the state of interest this can be inconvenient, and

sometimes problematic. However, no such integration prob-

lems are encountered with the self-referential technique.

With this technique only the crystal state of interest, at the

density of interest, is simulated. This means that this tech-

nique has the potential to be the most convenient, versatile,

and efficient technique yet devised.

In paper 2 this idea was applied to simulate some simple

crystals using a specialized isothermal-isobaric ensemble

Monte Carlo technique to calculate the Gibbs free energy. In

earlier work
28

Barnes and Kofke simulated one-dimensional

hard rods within the canonical ensemble. They calculated the

Helmholtz free energy for this system by system-size dou-

bling �using an altogether different technique to the one de-

scribed in paper 2�, and compared their results with exact

values for the grand-canonical Helmholtz free energy. Even

though the canonical ensemble is not extensive, they ob-

tained good agreement indicating that their system was suf-

ficiently large. They coined the phrase “self-referential” for

this general idea. A somewhat similar approach was used by

Mon
29

and Mon and Binder.
30

They calculated the free en-

ergy difference between lattice systems �once again in the

canonical ensemble� that are identical except for their size.

However, in this particular work scaling of the free energy

with system size is explicitly not assumed, and so this ap-

proach should not be considered to be of the SR kind.

Strictly, for general systems, we should choose to use an

ensemble where the free energy actually does scale linearly

with size for all system sizes �ignoring periodic boundary

induced finite-size effects�. In paper 2 the isothermal-isobaric

ensemble �NPT� was used, for which the Gibbs free energy

does scale with system size. If the small system has ns unit

cells and the large one has nl, then the free energy per unit

cell of this structure is �G / �nl−ns�, where �G is the Gibbs

free energy difference between these two systems. For a pure

crystal the chemical potential �=�G /Nc�nl−ns�, where Nc is

the number of particles per unit cell. For a mixture we must

also know the difference in chemical potential between each

species to obtain the absolute chemical potentials. For alloys,

this problem might be resolved using a semigrand ensemble

simulation.
3,31

The SR method has two stages: A replication stage fol-

lowed by a relaxation stage. If the large system is twice the

size of the small system, as is the case in paper 2, then

starting with a single-size system, replication produces a

double-size system that is constrained such that it is almost

exactly self-similar, i.e., the newly created half of the double-

size crystal has coordinates almost identical, to within a tol-

erance, to the original single-size crystal. Relaxation gradu-

ally relaxes this self-similarity constraint until the constraint

no longer has any effect on the crystal. The resulting double-

size crystal has twice the Gibbs free energy of the original

single-size crystal. The replication stage is needed because

the probability of creating an unconstrained double-size sys-

tem immediately from a single-size system is vanishingly

small. The relaxation stage is then needed to relax the con-

strained double-size crystal.

It is useful to maintain the constrained double-size crys-

tal at a density similar to the single-size crystal for two rea-

sons. First, so that it is not affected by phase transitions. And

second, so that the relaxation simulations can be performed

with a single efficient choice of Monte Carlo move param-

eters. To achieve this, the pressure and temperature of the

constrained double-size system can be changed. In paper 2

the initial pressure and temperature of this system were de-

termined by trial and error. But this is inconvenient. It would

be much better if the initial pressure and temperature of the

constrained double-size system could be determined imme-

diately. This present work shows that, in fact, a good choice

is always to set the initial temperature of the constrained

double-size system to be twice that of the single-size system

and to leave the pressure unchanged. This is a similar con-

clusion to that of Barnes and Kofke
28

who worked in the

canonical ensemble and also suggested the initial tempera-

ture of the constrained double-size system should be twice

that of the single-size system.

In paper 2 the free energy differences for the replication

and relaxation stages were calculated using “parameter

hopping.”
32

This technique simulates two neighboring states

�defined by nearly identical parameters� simultaneously, al-

lowing transitions back and forth between them. The free

energy difference between these neighboring states is then

simply related to their relative probability of occurrence.

However, this technique is inconvenient and inefficient. It is

inconvenient for two reasons. First, two different and special

kinds of simulation are needed; replication and relaxation

simulations. Second, only Monte Carlo simulation can be

used. It is inefficient because typically thousands of indi-

vidual parameter hops, each of which corresponds to a simu-

lation, are needed to traverse the large free energy difference

between constrained and unconstrained double-size systems.

This present work shows how the replication simulation can

be replaced by an ordinary simulation of the single-size sys-

tem provided the initial temperature and pressure of the con-

strained double-size system are chosen as described above,

and how a thermodynamic integration technique can be used

instead of parameter hopping to improve the efficiency of the

relaxation stage by about two orders of magnitude, depend-

ing on the system size. These changes also allow molecular

dynamics, at least in principle, to be used.

Finally, in paper 2 the initial “tolerance,” or self-



similarity constraint of the double-size system, is deter-

mined, in that case by trial and error, such that the initial

constrained double-size system can be generated with rea-

sonable probability. This present work shows how this incon-

venience is avoided, and how to determine whether the inte-

gration limits �both upper and lower� for the relaxation stage

are sufficient. Overall, the resulting SR method is now con-

venient and efficient.

The following sections describe the SR method and the

thermodynamic integration technique used here in detail, and

present results for hard-sphere and Lennard-Jones face-

centred-cubic crystals that are in excellent agreement with

paper 2. We conclude with a summary.

II. THE SR METHOD WITH THERMODYNAMIC
INTEGRATION

We work initially with the isothermal-isobaric ensemble,

but later also present the corresponding equations for the

canonical ensemble and show how results can be converted

between ensembles. Periodic boundaries are assumed. We

consider only spherical particles, and perfect pure crystals.

A. Replication

First, let us consider the replication stage. Here we wish

to find the free energy difference between a single-size sys-

tem and a constrained, nearly self-similar, double-size sys-

tem. Actually, for convenience we calculate

���Grep� =
G�1

kBT�1

−
Gs

kBTs

, �1�

where G is the Gibbs free energy, �1=kBT �kB is Boltmann’s

constant and T is temperature�, and subscripts s and �1

indicate the single-size and initial constrained double-size

systems.

This can be achieved by analyzing the relevant partition

functions � because G=−kBT ln �. The single-size partition

function for spherical particles is

�s = �s
−3Ns�

0

�

dVs exp�− �sPsVs�
1

Ns

�
V�

dr
Ns

	exp�− �sUs�r
Ns�� . �2�

Here, �−3N represents integration over momentum degrees of

freedom, which can be performed independently �� has units

of length�. The contribution of this factor is known exactly,

so we will omit all such factors and concentrate on the con-

figurational contribution. P, V, and N are the pressure, vol-

ume, and number of particles, respectively. Position coordi-

nates for N particles are denoted r
N=r1r2¯rN, and the V�

symbol indicates that particle positions are not permuted,

hence the factor N in the denominator rather than the usual

N!. U is the configurational contribution to the Hamiltonian,

i.e., the interaction energy. By clamping particle 1 to a fixed

position, and by dropping factors of �, we obtain

�s = �
0

�

dVs exp�− �sPsVs�
Vs

Ns

�
V�

dr
Ns−1

	exp�− �sUs�r
Ns�� , �3�

where a factor Vs replaces �V�
dr1.

Likewise, the partition function of the constrained

double-size crystal is

�� = �
0

�

dVd exp�− ��P�Vd�
Vd

Nd

�
V�

dr
Nd−1

	exp�− ��U��rNd�� . �4�

Here, quantities which can depend on the tolerance con-

straint � of the double-size system have the subscript �,

while quantities which are independent of the tolerance con-

straint have the subscript d. The configurational contribution

to the Hamiltonian of the double-size system includes the

self-similarity constraint, which is a function of the tolerance

�, and is written

U��rNd� = Us�r
Nd� + �

j=1

Ns


��r j+Ns
− r j − Lx� − �Lx� , �5�

where the tolerance constraint is the infinite step function,


�r� = 	� , r � 0

0, r � 0,

 �6�

Lx is the length of the vector Lx that defines the x-vertex of

half the double-size system simulation box, and r j is the

position coordinates of the jth particle. Clearly, according to

these equations the double-size system simulation box is

twice as long as the single-size system in the x direction.

For the initial, fully constrained double-size system we

have

��1
= �

0

�

dVd exp�− ��1
P�1

Vd�
Vd

Nd

�
V�

dr
Nd−1

	exp�− ��1
U�1

�rNd�� . �7�

This can be approximated as

��1
� 2�

0

�

dVs exp�− 2��1
P�1

Vs�
Vs

Ns

�
V�

dr
Ns−1

	exp�− 2��1
Us�r

Ns��v�1

Ns , �8�

where 
�1
=4���1Lx�3

/3 is the volume available to a particle

in the replicated half of the crystal when �=�1. This ap-

proximation is exact in the limit �1→0.

By choosing P�1
= Ps and ��1

=�s /2 we obtain

��1
� 2�

0

�

dVs exp�− �sPsVs�
Vs

Ns

�
V�

dr
Ns−1

	exp�− �sUs�r
Ns��
�1

Ns . �9�

So, we immediately see that



���Grep� = − ln���1

�s


 � − Ns ln�v�1
�s − ln�2� , �10�

where the angle brackets denote an ensemble average. This

relation, which becomes exact in the limit �1→0, is useful

because it allows the special Monte Carlo replication stage

simulation described in paper 2 to be replaced by an ordinary

�Monte Carlo or molecular dynamics� simulation of the

single-size system. It is also much more convenient because

P�1
and ��1

are automatically determined, rather than found

through some complicated optimization or trial-and-error

procedure. For crystals with cubic unit cells we have �
�1
�s

=4��1
3�Vs�s /3, which is easily measured provided �1 is

known.

B. Relaxation

The relaxation stage calculates

���Grel� =
G�m

kBTs

−
G�1

kBT�1

=
2Gs

kBTs

−
G�1

kBT�1

, �11�

where subscript �m indicates the largest constraint used. This

should be chosen such that increasing it has no effect on the

double-size system. Clearly,

Gs = �s
−1����Grep� + ���Grel�� . �12�

Paper 2 uses parameter hopping to calculate this difference,

i.e., ���Grel�=�i=1
m−1���G�i, where m is rather large, typi-

cally several thousand. As discussed earlier, this is not effi-

cient, and the use of parameter hopping requires Monte

Carlo simulation. The main aim of this present work is to

develop an efficient and convenient thermodynamic integra-

tion technique to achieve this calculation, i.e., to evaluate

���Grel� = �
�1

�m

d�
d��G��

d�
. �13�

To calculate d��G�� /d� we remember that �G=−ln �, and

hence

d��G��

d�
= −

1

��

d��

d�
= ���PsV� + U��

���

��
�

�

+ ���

�U�

��
�

�


 . �14�

So we have two contributions to ���Grel�; one due to

changes in temperature,

���GT� = �
�s/2

�s

d��PsV� + U���, �15�

and one due to changes in the tolerance constraint,

���Gg� = �
�1

�m

d����

�U�

��
�

�

. �16�

The former is easily determined by a series of simulations

and quadrature, provided the �-path is known. In paper 2 a

simple algorithm was suggested capable of choosing the

�-path so that the density remains reasonably constant over

the range of �. In this present work we use a similar algo-

rithm, to which we turn later. To determine the latter contri-

bution we must first differentiate the configurational contri-

bution to the Hamiltonian with respect to �. To achieve this

we prefer instead to work with the configurational contribu-

tion defined by

U��rNd� = Us�r
Nd� + ��

l=1

Ns

��ri� − �Lx��ri� − �Lx� , �17�

where ri�= �ri+Ns
−ri−Lx�, � is the Heaviside step function,

and � is an arbitrary constant. This expression is identical to

Eq. �5� in the limit �→�. So, we will work with this expres-

sion, and finally take the limit �→� to obtain the desired

result. We now find

�U�

��
= − �Lx�

i=1

Ns

���ri� − �Lx��ri� − �Lx� + ��ri� − �Lx�� .

�18�

So, we need to calculate

���Gg� = �
�1

�m

d��− ���Lx�
i=1

Ns

���ri� − �Lx��ri� − �Lx�

+ ��ri� − �Lx���
�

. �19�

The first term in the brackets is always zero, and the remain-

der can be written

���Gg� = − 4�Ns��
�1

�m

d����
0

�

dLxp��Lx�Lx

	�
0

�

dri��ri��
2g��ri�,Lx���ri� − �Lx� , �20�

where g��ri� ,Lx� is the probability distribution function

�rather like a radial distribution function� for ri� when the

tolerance is � and the half box x-length is Lx, and p��Lx� is

the probability distribution for Lx when the tolerance is �.

This reduces to

���Gg� = − 4�Ns��
�1

�m

d����
0

�

dLxp��Lx�Lx

	�
�Lx

�

dri��ri��
2g��ri�,Lx� . �21�

We can now take the limit �→� as follows. First, we note

that in this limit

g��ri�,Lx� = g���Lx,Lx�exp�− ����ri� − �Lx��,
�22�

ri� � �Lx.

We obtain this expression as follows. Because the Hamil-

tonian involves a piecewise continuous tolerance constraint

this pair distribution function for ri���Lx is given by



g��ri�,Lx� = g���Lx,Lx�exp�− ����ri� − �Lx� + c��ri�,Lx�

− c���Lx,Lc��, ri� � �Lx, �23�

where c� represents the effective potential resulting from in-

direct interactions, or correlations, between a particle and its

constrained partner. As �→� the constraint potential domi-

nates this expression because it becomes increasingly strong

and short ranged. So as �→�, c� becomes essentially con-

stant over that part of g� that is not effectively zero. Inserting

Eq. �22� into Eq. �21� gives

���Gg� = − 4�Ns��
�1

�m

d����
0

�

dLxp��Lx�Lx

	�
�Ls

�

dri��ri��
2g���Lx,Lx�

	exp�− ���ri� − �Lx�� , �24�

which can be integrated, and the limit taken, to give

���Gg� = − 4�Ns�
�1

�m

d��
0

�

dLxp��Lx�g���Lx,Lx��
2Lx

3.

�25�

However, in the limit �1→0, we find that 4�g��2Lx
3
/3

=1 /�, and so greater numerical accuracy is achieved by in-

tegrating with respect to ln���. This transforms Eq. �25� to

���Gg� = − 4�Ns�
ln��1�

ln��m�

d ln �

	�
0

�

dLxp��Lx�g���Lx,Lx��
3Lx

3. �26�

Finally, it is convenient to write this as

���Gg� = − 4�Ns�
ln��1�

ln��m�

d ln ��g���Lx,Lx��
3Lx

3��, �27�

where the curly brackets denote an ensemble average with

respect to Lx.

Putting Eqs. �10�, �15�, and �27� together gives our final

result for the configurational contribution, which in terms of

a length scale � is

���G� � − Ns ln� v�1

�3 �
s

− ln�2�

+ �
�s/2

�s

d��PsV� + U��� − 4�Ns

	�
ln��1�

ln��m�

d ln ��g���Lx,Lx��
3Lx

3��, �28�

which is exact in the limits �1→0 and �m→�. The momen-

tum contribution in terms of this length scale is

3Ns ln��s /��. Note that this length scale factor was implied,

but not explained, in paper 2. Also note that for hard spheres

U�=0. The factor ln�2� in Eq. �28� also deserves some dis-

cussion. We know that the Gibbs free energy is perfectly

extensive, and so is proportional to Ns. The only term in Eq.

�28� that appears not to be extensive is this ln�2� factor. It

originates from our use of clamping; if we did not clamp

particle 1 then this factor would vanish. So it is an artifact of

our technique, and will be compensated by an opposite factor

of ln�2� that is “buried” within the ensemble averages in Eq.

�28�. In other words, these ensemble averages are not actu-

ally perfectly extensive because of this ln�2� factor.

This expression depends only on the tolerance constraint

limits, �1 and �m. In principle it should be independent of

the �-path taken during the relaxation stage, provided the

crystal does not undergo any change of phase. To this end, it

is important that � be manipulated as � changes during the

relaxation stage so that no phase changes can occur. For

example, the crystal should not melt. We use a similar algo-

rithm as in earlier work to achieve this. So, first a target

volume is defined for the double-size system, Vt=2�Vs�s,

where �Vs�s is obtained from the same single-size simulation

needed to obtain �
�1
�s. A series of simulations are performed

where �i is the value of � for the ith simulation. An index k


is set to zero initially and if �V�i
��i

�Vt for any simulation;

otherwise it is incremented by 1. Changes in � are chosen

according to

��i
= ��i−1

+ �
�s − ��i−1

m − i
min�k

v
,m − i� , 1 � i � m

�s − ��i−1
, i = m ,

�
�29�

�m and �1 can be decided by analyzing �g���Lx ,Lx���. �m is

large enough when �g�m
��mLx ,Lx���m

�0, and small enough

when �g�1
�rij� ,Lx���1

��1 /
�1
��1

since then the approxima-

tion �8� is accurate.

The corresponding canonical ensemble result for the

change in the configurational contribution to the Helmholtz

free energy is simply

���F� � − Ns ln�v�1

�3 
 + �
�s/2

�s

d��U���

− 4�Ns�
ln��1�

ln��m�

d ln���g���Lx��
3Lx

3. �30�

With this ensemble there are no volume fluctuations and so

the �-path can be taken to be linear with �, resulting in a

straightforward and efficient calculation for the free energy

difference, which will depend on the volume of the en-

semble, i.e., �F�V�. Note also that the ln�2� term in Eq. �28�
does not appear here. Again, this is a result of clamping. If

we did not clamp particle 1 then the ln�2� term would be

present in Eq. �30�.
The Gibbs free energy or chemical potential correspond-

ing to a given pressure can be obtained from this canonical

ensemble calculation provided it is sufficiently large that

finite-size errors are insignificant. Then we can approximate

F�V�=�F�V� and use the reverse of a technique suggested in

paper 1 �note there is a sign error in paper 1�. So, if an

additional isothermal-isobaric simulation is performed, and

the volume probability distribution function of this simula-

tion, p�V�, is measured, then we have



G = �N = kBT ln p�V� + F�V� + PV . �31�

This shows that the free energy �and chemical potential� at a

given pressure can be calculated from the free energy at a

particular volume �and the same temperature�, provided the

volume probability distribution function at the given pressure

and temperature is known. This route to the Gibbs free en-

ergy or chemical potential is no more complicated than via

Eq. �28� because both routes require an isothermal-isobaric

simulation of the single-size system in addition to the relax-

ation simulations. The accuracy, and hence efficiency, of

each route will depend on how well volume fluctuations are

sampled in each case. We expect a similar level of numerical

effort for each route will achieve a similar level of accuracy.

In this work we adopt the isothermal-isobaric route �Eq.

�28�� so that results can be compared directly with those in

paper 2. This also avoids the approximation F�V�=�F�V�.
However, if the effect of finite-size systems is to be investi-

gated, as is usually the case, it should be more efficient to

perform canonical ensemble simulations for all system sizes,

and to convert to the isothermal-isobaric ensemble using

only a simulation of the largest system studied. This route

would also be slightly more straightforward because the tem-

perature change algorithm �Eq. �29�� need not be used.

C. Numerical and simulation details

Equation �28� requires two kinds of simulation. First, an

ordinary isothermal-isobaric simulation of the single-size

system to evaluate �
�1
�s. The integrals in Eq. �28� are car-

ried out numerically using the trapezium rule. This requires

n� separate evaluations of �PsV�+U��� and �g���Lx��3Lx
3��,

each with a different value of �. We choose to start with

�1, and increment � such that d�ln ��=� is constant

�so �ln��m /�1�� / �na−1�=��. Each ensemble average is cal-

culated using Monte Carlo simulation with the Hamiltonian

in Eq. �5�. �V��� and �U��� are straightforward ensemble

averages. We divide �g��rij� ��3Lx
3�� into nb bins and calculate

�g���Lx��3Lx
3�� by linear extrapolation to rij� =�Lx using the

ensemble averages of the nbth and nb−1th bins.

There are four sources of systematic error determined by

the choice of �1, �m, n�, and nb. These systematic errors can

always be reduced below any statistical error by reducing �1,

and/or increasing �m, na, and nb. Statistical errors are esti-

mated using a block-averaging method.
33

To improve efficiency, simulations of the double-size

constrained systems involve compound translation moves.

These are described in detail in paper 2, and involve attempts

to move a particle and its constrained partner simultaneously

as follows. Both particles are moved by the same amount �r,

which is chosen as per the usual displacement selection cri-

teria for particles in the small system. Then one of the par-

ticles, labeled j or j+Ns chosen randomly with equal prob-

ability, is displaced by a further amount �r�. The maximum

displacement allowed for �r� is the minimum of the maxi-

mum displacement allowed for �r and the tolerance con-

straint �Lx. Volume scaling moves are also described in de-

tail in paper 2. Note that the tolerance constraint scales with

system volume through Eq. �5�. Finally, each simulation is

suitably equilibrated before statistics are measured.

To compare numerical efficiency, code for the parameter

hopping method of paper 2 has been rewritten using as many

of the subroutines developed for the thermodynamic integra-

tion technique described above as possible. This revealed

two errors in certain aspects of the results of paper 2, al-

though the final results quoted in paper 2 are valid. First,

there is a systematic error �resulting from incorrect clamping

of particle 1� which is significant compared to the statistical

error quoted for �0 in paper 1, but much less than the statis-

tical error quoted for �m. Second, an error was made in re-

porting Td1 for the Lennard-Jones �LJ� system in paper 2.

Consequently, this work provides new results for the param-

eter hopping technique using this new code.

III. RESULTS FOR SIMPLE SYSTEMS

As with paper 2, the aim of this present work is to test

and validate the self-referential method, this time using the

thermodynamic integration technique described above. The

same simple model crystals are used here so that results can

be compared with those in paper 2. The hard sphere and

shifted-force LJ potentials are pair potentials, so

Us�r
Nd� = �

j�i=1

Nd

���ri − r j�� , �32�

where for hard spheres of diameter d

��r� = 	� , r � d

0, r � d ,

 �33�

while for the shifted-force LJ potential it is

��r� = 	�LJ�r� − �LJ�rc� − �LJ� �rc� , r � rc

0, r � rc.

 �34�

Here, �LJ�r�=4��x12−x6� is the full LJ potential, � is the LJ

energy parameter, x=� /r, where � is the LJ length param-

eter, rc is the cutoff range �2.5� in this case�, and the dash

indicates differentiation with respect to the separation r. We

do not address the issue of periodic boundary induced finite-

size effects because our motivation here is simply to validate

TABLE I. Results for the SR method with parameter hopping for 108 hard spheres at �P*=11.487 24,

�1=0.000 216 4, and �m=0.170 37. n�−1 is the number of integration steps, and the total number of MC

attempts includes the replication and relaxation stage simulations. Error estimates are to 1 standard deviation.

Simulations are performed on a standard 3.0 Ghz desktop personal computer.

n�

Total MC

attempts �106� ��rep ��rel �� Time �s�

2500 9350 1.2323�0.0011 14.785�0.012 16.017�0.012 34569



the thermodynamic integration technique proposed above,

and this can be achieved by comparison of results with those

in paper 2 using a single system size. In any case, these

affects were addressed in paper 2 for the hard sphere system.

The perfect �defect-free� fcc hard sphere crystal is simu-

lated at fluid-solid coexistence, so we choose a reduced pres-

sure of �P
s
*=�Psd

3=11.487 24, where d is the hard sphere

diameter �note that in Ref. 34 the reduced coexistence pres-

sure is calculated with an uncertainty of �0.09�. Tempera-

ture is arbitrary for this system. Simulations with Ns=108 are

performed �finite-size effects are not investigated here�. Re-

sults from using parameter hopping �PH� and thermody-

namic integration �TI� are compared, where the PH tech-

nique is identical to that described in paper 2. The

probabilities for choosing each trial move with the TI

technique are in the ratio 1 :Ns
−1 for displacement and volume

moves, respectively. For the PH technique we choose

P
�1

* =0.555P*.

The results for the PH technique are given in

Table I, where the length scale �=d. This result

���=16.017�0.012� agrees well with that in paper 2

���=16.000�0.014� despite the clamping error in paper 2

described above, and we take it as our reference point con-

sidering that the PH method does not suffer systematic errors

due to the choice of na �and nb is irrelevant�. As discussed in

paper 2, another reference value of ��=15.99�0.10 can be

obtained from alternative literature sources, although the sta-

tistical error in that value is greater than the systematic error

caused by finite-size effects. Simulation parameters and re-

sults for the TI technique using several values of na and nb

are given in Table II. We see that when na�10 and nb�20

these results agree with the PH result to within 2 standard

deviations, which is the level of agreement expected for this

number of results �only about 1 result in 20 is expected to lie

outside of two standard deviations�. Results with nb=10 ap-

pear to have significant systematic error. By comparing the

time required to obtain PH and TI results to the same level of

accuracy, we see that the isothermal-isobaric thermodynamic

integration technique is about 40 times more efficient in this

case.

For the perfect fcc shifted-force LJ crystal at its triple

point, i.e., at a reduced pressure and temperature of

P*= P�3
/�=0.001 82 and T*=kBT /�=0.56, one result with

Ns=256 is obtained �again, finite-size effect is not investi-

gated�. For the PH technique we choose T
�1

* =1.0 and

P
�1

* = P*. Considering the results for hard spheres, we choose

n�=20 and nb=20 for the Lennard-Jones case, which should

be adequate to within statistical error. As in paper 2, we

choose �1=0.001 54 for the PH technique. But for the TI

technique this choice might not be adequate, and so instead

we choose �1=0.000 154. This illustrates a minor advantage

of the PH technique over the TI technique. That is, the rep-

lication stage of the PH technique can be used to “jump” to

any value of �1 without loss of accuracy, provided the cor-

responding system “doubling” Monte Carlo move attempts

occur with sufficient probability. But with the TI technique

we must choose �1 to be small enough such that Eq. �8� is

accurate. However, this minor advantage is completely out-

weighed by the efficiency of the TI technique.

Simulation parameters and results are given in Tables III

and IV, where this time the length scale �=�. This time we

find agreement for �*=� /�, to within 2 standard deviations,

between the TI result ��*=−3.208�0.020� and the PH result

in Table IV ��*=−3.248�0.020�, and the result in paper 2

��*=−3.204�0.020�. As discussed in paper 2, another ref-

erence value of �*=−3.23�0.02 can be obtained from alter-

native literature sources for this system. By comparing the

time required to obtain PH and TI results to the same level of

accuracy, we see that thermodynamic integration is about

320 times more efficient in this case. This suggests that the

efficiency gain of the TI technique over the PH technique

scales at least with the square of system size �i.e., 320 /40

� �256 /108�2�, although we have not performed a detailed

analysis.

TABLE II. As for Table I, except that the thermodynamic integration tech-

nique is used, and nb is the number of bins in the g� distribution.

n� nb

Total MC

attempts �106� �� Time �s�

10 10 200 16.068�0.012 522

10 20 277 16.008�0.013 719

10 30 339 16.027�0.013 897

20 10 206 16.113�0.011 546

20 20 265 16.025�0.012 700

20 30 382 16.028�0.011 1013

30 10 189 16.081�0.012 522

30 20 252 16.002�0.012 700

30 30 336 15.997�0.012 898

40 10 196 16.105�0.013 539

40 20 252 16.031�0.012 683

40 30 364 16.006�0.012 1023

TABLE III. As for Table I except for the shifted-force Lennard-Jones system, with 256 particles at

P*=0.001 82, T*=0.56, �1=0.001 54, and �m=0.138. �rep
* and �rel

* are the replication and relaxation contri-

butions to the total reduced configurational chemical potential �*.

n�

Total MC

attempts �106� �rep
* �rel

* �* Time �hrs�

2000 2159 −0.6743�0.0008 −2.574�0.020 −3.248�0.020 231

TABLE IV. As for Table III except that the thermodynamic integration

technique is used and �1=0.000 154.

n� nb

Total MC

attempts �106� �* Time �h�

20 20 10.9 −3.208�0.020 0.73



For both the HS and LJ cases it is useful to examine how

g�� = ��4� /3�g���Lx ,Lx��3Lx
3�� varies over the chosen range

of � to determine whether the chosen limits are sufficient.

Figure 1 shows that the limits used are sufficient because this

quantity is close to 1 at small � and close to 0 at large � for

both systems studied. Also shown is the variation in the sys-

tem volume relative to the target volume. This shows that the

algorithm for controlling the temperature as � varies is

adequate.

IV. SUMMARY

In our view, this version of the self-referential method

based on thermodynamic integration is the most convenient

and efficient method for calculating crystal free energies

through molecular simulation yet devised. It is in principle

exact �to within statistical error� provided suitable choices of

�1, �m, n�, and nb are made, it should always avoid problems

associated with phase transitions,
18,26

and it avoids using the

grand-canonical ensemble.
8–15

In terms of convenience, there

is no need to evaluate a complicated “center-of-mass” cor-

rection or the free energy of a reference crystal,
3,19,20,27,35,36

or search for optimal parameters for reference states, there is

no need to modify the method for hard-core molecules,
3

no

need to devise optimal paths on a case-by-case basis along

integration parameters that avoid phase transitions,
23

and we

expect there is no need to “integrate away” pore walls,
16

in

the case of confined crystals, for example, so that an integra-

tion path that connects with an ideal reference crystal can be

defined �although further work is needed to confirm this�.
Any molecular simulation method that allows configura-

tional Hamiltonians of the form �5� can be used. So in prin-

ciple molecular dynamics can also be used. It can be em-

ployed with either the isothermal-isobaric or canonical

ensembles, or equivalent ensembles for confined crystals.

We can think of no reason why the choices P�1
= Ps and

��1
=�s /2, and the algorithm defined by Eq. �29� for travers-

ing the �-path, should not always suffice �note that this al-

gorithm is not needed when using the canonical ensemble

route�. In this way phase transitions should be avoided. In

terms of efficiency, it should be similar to other methods

based on thermodynamic integration, such as the lattice cou-

pling expansion method of Frenkel and Ladd
20

and Meijer

et al.
27

This work has shown that it is much more efficient

than the previous method based on parameter hopping, and

we also expect it to be much more efficient than other biased

sampling methods.
2,9,12,22,37

In this work each single-sized

system consists of a cubic simulation box, so the double-

sized system is a rectangular box. However, because all pri-

mary crystal unit cells are parallelepipeds, the SR method

should be completely general. Future work will investigate

its versatility, by considering molecular crystals, noncubic

crystals, and crystals confined within pores.

In this work we only consider the case n=2m. Other

choices are conceivable, for example, n1=1.5ns if there are

an even number of unit cells in the simulation box in the

direction of Lx, but they have not been rigorously investi-

gated. A more radical idea that has been mentioned in earlier

work
2

is to set n1=ns+1 by adapting Tilwani’s retiling idea,
7

which was formulated in the context of the 2D hard-disk

crystal for which the unit cell consists of just one disk. So

instead of replicating the entire single-size system to create a

double-size system, only a single unit cell �for a bulk crystal�
need be replicated. This will dramatically reduce the free

energy difference �G to be calculated. However, now that

thermodynamic integration has been employed in the SR

context, it is not clear whether this retiling approach will

yield any advantage.
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