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Abstract

Using a phase-field model to describe fluid/fluid inter-facial dynamics and a lattice Boltzmann

model to address hydrodynamics, 2 dimensional (2D) numerical simulations have been performed

to understand the mechanisms of droplet formation in microfluidic T-junction. Although 2D sim-

ulations may not capture underlying physics quantitatively, our findings will help to clarify contro-

versial experimental observations and identify new physical mechanisms. We have systematically

examined the influence of capillary number, flow rate ratio, viscosity ratio and contact angle in the

droplet generation process. We clearly observe that the transition from the squeezing regime to the

dripping regime occurs at a critical capillary number of 0.018, which is independent of flow rate

ratio, viscosity ratio and contact angle. In the squeezing regime, the squeezing pressure plays a

dominant role in the droplet breakup process, which arises when the emerging interface obstructs

the main channel. The droplet size depends on both the capillary number and the flow rate ratio,

but is independent of the viscosity ratio under completely hydrophobic wetting conditions. In the

dripping regime, the droplet size will be significantly influenced by the viscosity ratio as well as

the built-up squeezing pressure. When the capillary number increases, the droplet size becomes

less dependent on the flow rate ratio. The contact angle also affects the droplet shape, size and

detachment point, especially at small capillary numbers. More hydrophobic wetting properties are

expected to produce smaller droplets. Interestingly, the droplet size is dependent on the viscosity

ratio only for less hydrophobic wetting conditions.
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I. INTRODUCTION

Rapid development of micro-fabrication techniques has facilitated a broad range of mi-

crofluidic applications in biological and chemical research and associated industries [1–3].

Microdroplet technology has recently emerged as a promising new paradigm for biological

and chemical analysis, with each droplet acting as an individual chemical reactor. Sample

encapsulation in the form of droplets avoids the sample dilution caused by Taylor disper-

sion [4], and increases mixing performance [5]. In addition, it can avoid sample/surface

interaction thus eliminate surface adsorption and cross sample contamination. Although

many droplet-based microfluidic devices have been developed, users have not yet embraced

this technology. One major reason is that dynamics of droplet in microchennels has not

well understood, which hinders device optimization and operation. Here, we aim to address

this challenge and focus on understanding the dynamics process of droplet generation in a

T-junction.

T-junctions have been commonly used to generate droplets in microfluidic devices e.g. [5–

14]. The channel geometries have been found to play an important role in the droplet for-

mation process. For example, Garstecki et al. [8] identified a squeezing mechanism due to

confined geometry in droplet formation process, which does not exist in an unbounded flow

condition. However, the currently available experimental data are sporadic. Various mate-

rials are used to fabricate the channels with different dimensions, while the experiments are

operated under a wide range of flow conditions with different fluids. Consequently, the in-

formation is fragmented, which leads to inconclusive and even contradictory findings. Many

coupled factors will affect the droplet formation process, e.g. the inter-facial tension, the

wetting properties of solid surface, the volumetric flow rates of both immiscible fluids and

their viscosities, so that the droplet dynamics in microdevices is very complicated. While

experimental work has helped to understand underlying physics, experiments at such small

scale are still difficult. For example, it is challenging to accurately measure droplet size, pres-

sure and velocity fields, and droplet deformation, breakup and coalescence. Since numerical

simulation can provide more detailed information on droplet dynamics, computational ap-

proach has emerged to investigate droplet generation process, e.g. [15–18]. Rich information

can be extracted from simulation data, e.g. De Menech et al. [17] identified three distinct

mechanisms i.e. squeezing, dripping and jetting. However, there is currently no simula-
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tion method available that captures both intermolecular and hydrodynamic effects in droplet

dynamics, within the reach of current computational technology. It is still challenging to

numerically simulate droplet generation, transportation, and interactions with other droplets

and surface. While the front tracking methods are not suitable for droplet breakup and

coalescence, the interface capturing methods such as volume-of-fluid and level set methods

will experience numerical instability at the interface regime when the inter-facial tension

becomes a dominant factor in microdroplet behavior [19]. Recently developed lattice Boltz-

mann (LB) method is known to be able to model inter-facial interactions while incorporates

fluid flow as a system feature [20]. It is a pseudo-molecular method tracking evolutions of

the distribution function of an assembly of molecules and built upon microscopic models

and mesoscopic kinetic equations [21]. Its mesoscopic nature can provide many advantages

of molecular dynamics, making the LB method especially useful for simulating droplet dy-

namics. Here, an improved multiphase LB model, using the phase field theory to describe

inter-facial interactions, will be employed to investigate the droplet formation in a microflu-

idic T-junction. The influence of capillary number, flow rate ratio, viscosity ratio and contact

angle on droplet breakup, size and detachment are to be systematically studied. Similar

numerical investigation has recently been performed in 3 dimensions by De Menech et al.

[17] where the phase-field model was coupled with the Navier-Stokes equations to resolve

inter-facial dynamics as well as hydrodynamics.

II. NUMERICAL MODEL

A unifying feature of all the phase-field models is the existence of a free-energy func-

tional, which not only determines the equilibrium properties, but also strongly influences

the dynamics of a multiphase system. The transport of physical quantities can be linked

to free-energy functional by a generalized hydrodynamic theory [22], and thus the interface

can be captured automatically in the simulation. Here, we describe the phase field model

for a two-phase system and the lattice Boltzmann model, which are used in our simulation.

In particular, we emphasize the implementation of the inlet and outlet boundary conditions

and the fluid/surface interactions.
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A. Free energy theory

We consider a binary incompressible fluid consisting of A and B molecules with the phase

orders into an A-rich phase and a B-rich phase below a critical temperature. The Landau

free energy [23] is used to describe the equilibrium properties of the fluid:

F (φ,∇φ) =

∫
[

Ψ(φ) +
1

2
κ|∇φ|2 + ρc2

s ln ρ

]

dV, (1)

where ρA, ρB are the number densities of A and B, respectively; ρ = ρA + ρB is the total

density; φ = (ρB −ρA)/ρ is the the order parameter, which describes the normalized density

difference in the two fluids; Ψ (φ) is the bulk free energy density having a double well form,

Ψ (φ) = 1
4
a(φ2 − 1)2; 1

2
κ|∇φ|2 is the inter-facial energy density, which is linked to the inter-

facial tension. The final term in the free energy, which depends only on the density ρ, is

introduced to enforce incompressibility.

The chemical potential µ is defined as the variational derivative of the free energy func-

tional with respect to the order parameter, i.e.,

µ = δF/δφ = Ψ′(φ) − κ∇2φ = aφ(φ2 − 1) − κ∇2φ. (2)

The equilibrium interface profile can be obtained from Eq. (2) at µ = 0, which leads to

two stable uniform solutions φ = ±1 representing the coexisting bulk phases. The one-

dimensional nonuniform solution, e.g. the x-direction along the gradient of φ, is given by

φ(x) = tanh(x/ξ), (3)

where ξ is a parameter proportional to the interface thickness, which is defined as

ξ =
√

2κ/a. (4)

Since the inter-facial tension σ can be interpreted as the excess free energy per unit interface

area for a plane interface in equilibrium [24], it can be obtained as

σ = κ

∫ +∞

−∞

(

dφ

dx

)2

dx. (5)

With Eq. (3) and Eq. (5), we can get

σ =
4κ

3ξ
. (6)

Eqs.(4) and (6) suggest that we can control the inter-facial tension and the interface thickness

through the parameters κ and a.
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B. Lattice Boltzmann model

Two distribution functions gi and fi are used to describe the evolution of the order

parameter φ(~x) and the flowfield ~u(~x) respectively, and the evolution equations are:

fi(~x + ~eiδt, t + δt) − fi(~x, t) =
f eq

i (~x, t) − fi(~x, t)

τf

+ (1 − 1

2τf

)
(~ei − ~u) · µ∇φ

c2
s

Γi(~u)δt,

(7)

gi(~x + ~eiδt, t + δt) − gi(~x, t) =
geq

i (~x, t) − gi(~x, t)

τg

, (8)

where

Γi(~u) = wi

[

1 +
eiαuα

c2
s

+
uαuβ(eiαeiβ − c2

sδαβ)

2c4
s

]

, (9)

and cs is the lattice speed of sound, which is c/
√

3 for the D2Q9 model [25]; δt is the time

step and wi are the weight factors associated with the lattice velocity vectors ~ei; τf and τg

are the relaxation parameters related to the fluid viscosity and the mobility respectively.

The equilibrium distribution functions, f eq
i and geq

i , are given as below,

f eq
i = wi

[

p

c2s
+ ρ

(

eiαuα

c2s
+

uαuβ(eiαeiβ−c2sδαβ)

2c4s

)]

, (10)

geq
i = wi

[

Ai + φ
(

eiαuα

c2s
+

uαuβ(eiαeiβ−c2sδαβ)

2c4s

)]

, (11)

where the coefficients Ai are given by

Ai =







Γµ/c2
s (i > 0)

[φ − (1 − w0)Γµ/c2
s] /w0 (i = 0),

(12)

where Γ is a parameter related to the Cahn-Hilliard mobility M , i.e. M = Γ(τg − 1/2)δt.

In the following simulations, the densities of the phases A and B are assumed to be

equal because the density difference in the commonly-used water droplet in oil is small. We

set τg = 1/(3 −
√

3) to minimize numerical errors of the convection-diffusion scheme [26].

To account for unequal viscosities of the two phases, we define the viscosity η as a linear

function of the order parameter:

η(φ) =
1 − φ

2
ηA +

1 + φ

2
ηB. (13)

In this way, η automatically changes across the interface with a profile similar to the tanh

function. In Eq. (13), ηA and ηB are the viscosities of the phase A and B. The local
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relaxation time τf can be calculated from the local viscosity by:

η(φ) = ρc2
s[τf (φ) − 1/2]δt. (14)

After the propagation step, the macroscopic variables can be calculated as:

φ =
∑

i

gi, (15)

p

c2
s

=
∑

i

fi, (16)

ρ~u =
∑

i

fi~ei +
1

2
µ∇φ. (17)

Using the Chapman-Enskog multiscale expansion, the Navier-Stokes equations and the

Cahn-Hilliard equation can be obtained:

∇ · ~u = 0, (18)

ρ(∂t~u + ~u · ∇~u) = −∇p + ∇ · [η(∇~u + ∇~uT)] + µ∇φ, (19)

∂tφ + ~u · ∇φ = ∇ · (M∇µ). (20)

Note that the Navier-Stokes equations converge to the classical sharp interface behavior as

the interface thickness reduces towards zero along with the diffusivity 1/Pe, where Pe is the

Peclet number defined as:

Pe = UL/Ma, (21)

where U and L are the characteristic velocity and length of the system.

In the numerical solution, a sufficient number of grids are required to avoid spurious

currents and numerical instability at the interface. For a finite interface thickness, straining

flows can thicken or thin the interface, which must be balanced by diffusion. Meanwhile,

large diffusion will excessively damp the flow. Therefore, Peclet number, which indicates the

diffusivity, must be appropriately chosen [15]. In our simulations, we compromise to have

ξ of two lattice grids, so that the interface is resolved typically 5 ∼ 6 grids, and Pe is of

O(10) ∼ O(100).

C. Boundary conditions

No-slip boundary condition is applied at solid walls using half-way bounceback [20], which

can prevent the boundary “mass leakage”, especially for a flow with small velocity. If the
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fluid node ~x is a boundary node, its links are divided into two groups: boundary links

(BL) and fluid links (FL) [27]. With a given inlet volumetric flow rate, Qin, we impose the

following inlet boundary condition:

fi(~x, t + δt) =







fi∗(~x, t+) + 2wiρQin/c
2
s if i∗ is BL,

fi(~x + ~ei∗ , t
+) otherwise.

(22)

where ~ei∗ = −~ei, t+ is the time immediately after the collision, i.e. t+ − t ≪ 1. We adopt

the outlet pressure boundary condition developed by Zou and He [28].

The wetting properties are important for fluid/surface interactions. Iwahara et al. [29]

proposed an elegant way to implement the wetting boundary condition in a vapor-liquid

system. Recently, van der Graaf et al. [16] used the same wetting boundary treatment for

a liquid-liquid system. They assume that the wall is a mixture of two fluids, thus having

a certain value of the order parameter φw, so the derivatives of the order parameter at

the surface boundary can be calculated using (9 points) regular finite difference stencils

[30]. Consequently, the chemical potential and the external force term in Eq. (7) become

dependent on the properties of the neighboring solid lattice sites, resulting in a special case

of the Cahn boundary condition [31]. Similarly, we use the formula below to assign the order

parameter φw to the solid lattice site next to the wall:

cos(θw) =
1

2
φw(3 − φ2

w), (23)

where θw is the desired static contact angle, which is related to the inter-facial tensions by

the Young’s equation:

cos(θw) =
σAw − σBw

σ
, (24)

where σAw or σBw is the inter-facial tension between the fluid phase (A or B) and the solid

surface.

III. DROPLET FORMATION IN A T-JUNCTION

We study droplet formation in a T-junction microchannel, as illustrated in Fig. 1, con-

sisting of a main channel with width wc and a lateral channel with width wd. Both wc and

wd are 100 µm in the current simulations. The continuous phase oil (phase A) is introduced

at the inlet of the main channel, and the dispersed phase water (phase B) is injected into
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FIG. 1: Schematic illustration of the droplet generation in a microfluidic T-junction, where wc, wd

are the widths of the main and lateral channels, and Qc and Qd are the inlet volumetric flow rates

of the continuous and dispersed phases.

the lateral channel. Since the phase field calculation will resolve the interface structure,

it is computationally too costly for a 3 dimensional (3D) simulation to resolve a typical 1

nm oil-water interface of a microdroplet. Therefore, 3D phase field calculation will have to

artificially enlarge the interface thickness to simulate droplet motion. Since the grid number

may significantly affect the simulation results of the phase field method, it is important to

minimize the numerical error introduced by the grid number. While the essential physics

can still be retained, we run simulations in 2D with the computational domain consisting of

300 × 60 lattices. In all the cases, we find that mesh refinement will lead to results variations

no more than 5%. We will now use the subscripts ‘c’ and ‘d’ to refer to the continuous and

dispersed phases respectively.

Flow behavior in a microfluidic T-junction can be classified by a group of dimensionless

parameters, which are commonly defined by the experimentally measurable variables e.g.

the inter-facial tension, the inlet volumetric flow rates (Qc and Qd) and viscosities (ηc and

ηd) of the two fluids. For typical microfluidic flow, the Reynolds number is so small that the

inertial effect can be neglected. The Bond number is also negligibly small due to the small

density difference of the two immiscible liquids. In contrast, the capillary number (Ca),

which describes relative importance of the viscosity and the inter-facial tension, is a most

important parameter to understand droplet generation. Here it is defined by the average

inlet velocity uc and the viscosity ηc of the continuous phase, and the inter-facial tension σ

as

Ca =
ηcuc

σ
=

ηcQc

σwc

. (25)

Another important dimensionless parameter is the ratio of flow rates (Q = Qd/Qc). In addi-

tion, the viscosity ratio (λ = ηd/ηc) and fluid/surface interaction have been experimentally
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(a) (b)

FIG. 2: The snapshots of droplet formation: (a) Ca=0.00056, Qd = 0.004; and (b) Ca=0.059,

Qd = 0.008.

observed to play important roles in droplet formation process [32, 33]. In order to achieve

consistent droplet breakup, it is necessary that the continuous phase liquid should prefer-

entially wet the walls. The magnitude of wettability will be described by a static contact

angle θw. Here, we will examine the roles of these parameters in droplet formation.

A. Influence of capillary number

A series of simulations are performed with the inter-facial tension σ = 0.0036, the viscosity

of the continuous phase ηc = 0.016 and the viscosity ratio λ = 1/4. The corresponding

dimensional inter-facial tension and viscosity of the continuous phase are 0.01125 Nm−1

and 0.02 Pas respectively. The densities of both fluids are assumed to be unity. The contact

angle θw = 180◦ so that the continuous phase fluid completely wets the walls, while the

dispersed phase fluid is non-wetting. In order to compare our simulation results with the

experimental data [11, 12, 34], we choose Qd=0.004, 0.006 and 0.008 in the simulations. For

convenience, all quantities are expressed in the lattice units except the droplet diameter,

which is in the physical unit.

Fig. 2 shows the snapshots of droplet formation in the T-junction. The droplet deforms

before detachment, and the necking of the dispersed phase is initiated once the continuous

phase fluid intrudes into the upstream of the lateral channel. The intrusion of the contin-

uous phase accentuates the influence of the contact line dynamics, which is thought to be

indispensable for the droplet detachment. Fig. 2 shows that the necking occurs soon after

the dispersed phase streams into the main channel and the droplets are produced when Ca
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FIG. 3: The effect of capillary number on the droplet diameter at the dispersed phase flow rates

Qd of 4 × 10−3, 6 × 10−3 and 8 × 10−3 respectively. The lines represent the power fitting of the

simulation results

is large (Ca=0.059), while the plugs are formed when Ca is small (Ca=0.00056). This phe-

nomenon has also been observed in the experimental work [11, 12]. Fig. 3 shows that the

droplet diameter becomes smaller when Ca increases for a fixed dispersed phase flow rate,

and is very weakly dependent on the dispersed phase flow rate. Here, the effective diameter

of a non-spherical droplet is calculated as the same as the diameter of a spherical droplet

with the same volume.

In both experiment [7] and simulation [16], van der Graaf et al. found that the final

droplet volume is a result of a two-stage droplet growth. Initially, the droplet grows to a

critical volume Vc until the forces exerted on the interface become balanced. Subsequently,

the droplet continues to grow for a time tn for necking due to the continuous injection of

the dispersed phase fluid. And the final droplet volume V can be described by [7]

V = Vc + tnQd. (26)

Vc depends only on Ca and the duration of necking tn and decreases when Ca increases.

An empirical relationship was proposed to predict the droplet volume by van der Graaf et

al. [16]:

V = Vc,refCam + tn,refCanQd, (27)

where Vc,ref and tn,ref are the reference values at Ca=1 (the droplet detachment process
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is very fast, i.e. tn → 0); the exponents m and n depend on the device geometry. In our

simulation, we find that m = n = −0.78, while m = n = −0.75 were also reported by van

der Graaf et al. [16].

B. Influence of flow rate ratio

Here, we study the influence of flow rate ratio on droplet formation in the T-junction over

a broad range of capillary numbers. Three different flow rate ratios Q = 1/8, 1/4, and 1/2

are used in the simulations. For each flow rate ratio, the capillary number varies from 0.004

to 0.056, typically found in microfluidic droplet generation. The wetting conditions and

the densities of both phases are kept the same as in the previous section. The inter-facial

tension σ is now set to be 0.005, and the viscosity of the continuous phase fluid ηc is 0.08

(the corresponding dimensional values are 0.0156 Nm−1 and 0.01 Pas respectively). The

viscosity ratio λ is 1/8 here.

As shown in Fig. 4, when the capillary number is low i.e. Ca=0.006, the incoming

dispersed phase fluid tends to occupy the full width of the main channel, and the breakup

occurs at the downstream corner of the T-junction. When the capillary number increases

i.e. Ca=0.032, 0.056, the dispersed phase fluid occupies only part of the main channel, and

smaller droplets are formed. According to Ca, we find two distinguished droplet generation

regimes i.e. the squeezing and dripping regimes as identified by De Menech et al. [17]. In

the squeezing regime when Ca is small, the pressure buildup in the upstream due to the

obstruction of the main channel by the emerging droplet plays a dominant role in “pinching

off” the droplet, while the viscous shear force becomes increasingly important in the dripping

regime when Ca increases.

Fig. 4 clearly shows the effect of Q and Ca on the droplet detachment point. For small

Q, i.e. Q = 1/8, the droplets are pinched off at the T-junction corner for all the capillary

numbers. However, for Q = 1/4 and 1/2, increasing Ca will force the detachment point to

move from the corner to the downstream. When Ca is 0.006, varying Q from 1/8 to 1/2 does

not change the detachment point of the droplet. When Ca is 0.032 and 0.056, increasing Q

will move the detachment point from the T-junction corner to the downstream. In addition,

we find the droplet detachment point gradually moves to the downstream until a stable jet

is formed when we increase Ca and Q, which was also observed in both simulation [17] and
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(i) (ii) (iii) (i) (ii) (iii)

(a) (b)
(i) (ii) (iii)

(c)

FIG. 4: The effect of capillary number and flow rate ratio in droplet formation process with a fixed

viscosity ratio, i.e. λ = 1/8: (a) Ca=0.006; (b) Ca=0.032; (c) Ca=0.056; and the flow rate ratio Q

is: (i) 1/8; (ii) 1/4; and (iii) 1/2.

experiment [14].

Fig. 5 gives the predicted droplet diameter as a function of the capillary number for

three different flow rate ratios. The droplet grows when the flow rate ratio increases but its

diameter decreases when the capillary number increases. For all Q, we can clearly identify

two distinguished squeezing and dripping regimes with the same critical capillary number,

Cac = 0.018. In the squeezing regime, the flow rate ratio shows significant effect on the

droplet size. While in the dripping regime, the effect of the flow rate ratio diminishes as Ca

increases, which was also recently reported by Menech et al. [17]. The influence of the flow

rate ratio was numerically investigated in [17] for both squeezing and dripping regimes, where

the critical capillary number of 0.015 was found for the squeezing and dripping transition.

However, the recent experimental study by Christopher et al. [14] did not observe the critical

capillary number during the squeezing-to-dripping transition. In our simulation, we notice

that the two regimes become difficult to distinguish as Q decreases because the droplet
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FIG. 5: The effect of capillary number and flow rate ratio on droplet diameter at a fixed viscosity

ratio, λ = 1/8.

detachment point is always close to the downstream corner of the T-junction at small Q. This

may explain why Christopher et al. [14] did not observe the critical Ca during the squeezing-

to-dripping transition because they performed experiments at small viscosity ratio λ = 0.01,

where the droplet breakup always occurs at the downstream corner of the T-junction.

Many experimental studies were carried out in the squeezing regime so that the droplets

filled the main channel and formed “plug-like” or “slug-like” shapes [5, 8, 35], where the

viscous shear force may be ignored and the dominant force responsible for droplet breakup is

the squeezing pressure caused by the channel obstruction. Garstecki et al. [8] argued that the

detachment begins once the emerging droplet fills the main channel and the droplet continues

to grow during this time due to continuous injection of the dispersed phase fluid. Assuming

that the neck squeezes at a rate proportional to the average velocity of the continuous phase

fluid, and the plug fills at a rate proportional to Qd, a scaling law for the final plug length l

was established:

l/wc = 1 + αQ, (28)

where α is a constant of order one, whose value depends on the widths of both channels.

Eq. (28) clearly shows the plug length depends only on Q. However, our simulation results

shown in Fig. 5 suggest that the droplet size also strongly depends on Ca in the squeezing

regime, which is consistent with the experimental observations [14]. Therefore, the role of
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FIG. 6: For small capillary number (Ca=0.005) in the squeezing regime, our simulation results show

that the effect of flow rate ratio on the droplet size obeys the scaling law proposed by Garstecki et

al. [8]

capillary number needs to be reflected in the scaling law.

Although the scaling law Eq. (28) does not capture the capillary number dependency

that we observe in simulations, it can predict the droplet size under various flow rate ratios

when Ca is fixed in the squeezing regime. Fig. 6 shows a scaling formula of l/wc = 1+1.82Q

when Ca=0.005. In addition, Eq. (28) indicates that the droplet length is independent of

the viscosity ratio λ.

C. Influence of viscosity ratio

Here, we investigate the role of viscosity ratio in the droplet breakup process. In the

simulations, the flow rate ratio, Q is fixed at 1/4. The other parameters are kept the same

as they are in the previous section. Fig. 7 shows a series of snapshots of droplet formation

with λ = 1/8 and 1. At the low Ca (Ca=0.006), as shown in Fig. 7(a), the droplet fills the

main channel and the detachment occurs at the downstream corner of the T-junction for

both viscosity ratios. At the high capillary number (Ca=0.032, 0.056), the large viscosity

ratio will force the position of droplet detachment point to move further to the downstream,

which is similar to the effects of Ca and Q as discussed in Section B.

Fig. 8 shows that the critical capillary number Cac = 0.018, which distinguishes the

squeezing and dripping regimes, is independent of the viscosity ratio. In the squeezing
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(i) (ii) (i) (ii)

(a) (b)
(i) (ii)

(c)

FIG. 7: The effect of viscosity ratio in the droplet formation process at a fixed flow rate ratio

Q = 1/4, where (a) Ca=0.006; (b) Ca=0.032; and (c) Ca=0.056; and the viscosity ratio λ is 1/8

and 1 for the column (i) and (ii).

regime (Ca ≤ Cac), the predicted droplet diameter is nearly independent of the viscosity

ratio, where the droplet formation is completely controlled by the capillary force and the

squeezing pressure. In the dripping regime (Ca > Cac), the influence of viscosity ratio

becomes more pronounced as Ca increases, where the large viscosity ratio leads to smaller

droplets. However, it also shows that the influence of viscosity ratio on the generated droplet

diameter in the confined geometry is not as significant as in the unbounded flow [36], where

the breakup of droplets is controlled by a competition between the viscous shear force and

the capillary force in the dripping regime. This indicates that the squeezing pressure caused

by the confinement of geometry of a T-junction has to be taken into account even in the

dripping regime.
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FIG. 8: The effect of capillary number and viscosity ratio on droplet diameter at a fixed flow rate

ratio, i.e. Q = 1/4.

D. Influence of contact angle

Due to high surface to volume ratio, fluid/surface interaction will significantly affect the

droplet dynamics in microchannels. In order to examine the influence of wetting properties

on droplet formation, we simulate the droplet generation at different contact angles i.e.

θw = 110◦, 130◦, 150◦ and 180◦. The other parameters are kept the same as they are in the

previous section. Fig. 9 shows that the contact angle influences droplet shape, generation

frequency, the distance between two neighboring droplets, and the detachment point. The

droplet interfaces are prone to be normal to the channel walls at small contact angles, which

is consistent with the theory of interface dynamics. In addition, our model can simulate

dynamic contact angle. We find that the advancing and receding contact angles are different

from the prescribed static contact angle θw. This phenomenon has been observed in many

experiments, and is well known as the contact angle hysteresis [37].

Fig. 10 shows that the droplet diameter decreases as the contact angle increases, but the

squeezing-to-dripping transition still occurs at the the same critical capillary number i.e.

Ca=0.018 for different wetting conditions. In addition, the droplet size, which was observed

to be independent of the viscosity ratio in the squeezing regime [8, 17], is only valid for more

hydrophobic wetting conditions. When θw is small at 110◦ and 130◦, we find that the droplet

size depends on the viscosity ratio. For a given contact angle θw, larger λ generally produces
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FIG. 9: The flow patterns for different contact angles: θw is same in each row (110◦, 130◦, 150◦ and

180◦ from the top row to the bottom row); column (i) Ca=0.006, column (ii) Ca=0.032, column

(iii) Ca=0.056; (a) λ = 1/8 and (b) λ = 1.
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FIG. 10: The effect of contact angle, capillary number and viscosity ratio on droplet diameter.

slightly larger droplets in the squeezing regime but smaller droplets in the dripping regime.

Interestingly, we find that the wetting property has more significant effect on droplet size

at small Ca, and its effect diminishes gradually when Ca increases. The reason may be

that the generated droplet at a small Ca is usually big, which has a large contact area with

the channel surface, so that the wall surface plays a more significant role in the droplet

generation.

IV. CONCLUSIONS

In this work, an improved phase field lattice Boltzmann model has been applied to study

the droplet formation in a microfluidic T-junction. The capillary number, the flow rate ratio,
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the viscosity ratio and the contact angle have found to be important in droplet formation,

and these parameters together control the complex droplet generation process. We have

focused on droplet formation in the squeezing and dripping regimes. The squeezing-to-

dripping transition occurs at a critical capillary number Cac = 0.018, which is independent

of the flow rate ratio, the viscosity ratio and the contact angle. Unlike unbounded flow, the

squeezing pressure not only dominates the droplet generation in the squeezing regime but

also is important in the dripping regime. Garstecki et al. [8] confirmed that the depth of

the channel plays an important role in droplet formation, so 3D simulations are essential to

quantitatively reveal underlying physics. In the next step, we will develop high-performance

computational code using massive parallel processors to carry out 3D simulations which can

capture both intermolecular and hydrodynamic effects in droplet dynamics.
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V. CAPTIONS

Figure 1. Schematic illustration of the droplet generation in a microfluidic T-junction,

where wc, wd are the widths of the main and lateral channels, and Qc and Qd are the inlet

volumetric flow rates of the continuous and dispersed phases.

Figure 2. The snapshots of droplet formation: (a) Ca=0.00056, Qd = 0.004; and (b)

Ca=0.059, Qd = 0.008.

Figure 3. The effect of capillary number on the droplet diameter at the dispersed phase

flow rates Qd of 4× 10−3, 6× 10−3 and 8× 10−3 respectively. The lines represent the power

fitting of the simulation results

Figure 4. The effect of capillary number and flow rate ratio in droplet formation process

with a fixed viscosity ratio, i.e. λ = 1/8: (a) Ca=0.006; (b) Ca=0.032; (c) Ca=0.056; and

the flow rate ratio Q is: (i) 1/8; (ii) 1/4; and (iii) 1/2.

Figure 5. The effect of capillary number and flow rate ratio on droplet diameter at a

fixed viscosity ratio, λ = 1/8.

Figure 6. For small capillary number (Ca=0.005) in the squeezing regime, our simulation

results show that the effect of flow rate ratio on the droplet size obeys the scaling law

proposed by Garstecki et al. [8].

Figure 7. The effect of viscosity ratio in the droplet formation process at a fixed flow

rate ratio Q = 1/4, where (a) Ca=0.006; (b) Ca=0.032; and (c) Ca=0.056; and the viscosity

ratio λ is 1/8 and 1 for the column (i) and (ii).

Figure 8. The effect of capillary number and viscosity ratio on droplet diameter at a fixed

flow rate ratio, i.e. Q = 1/4.

Figure 9. The flow patterns for different contact angles: θw is same in each row

(110◦, 130◦, 150◦ and 180◦ from the top row to the bottom row); column (i) Ca=0.006,

column (ii) Ca=0.032, column (iii) Ca=0.056; (a) λ = 1/8 and (b) λ = 1.

Figure 10. The effect of contact angle, capillary number and viscosity ratio on droplet

diameter.
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