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Abstract

Consider a measure µλ =
∑

x ξxδx where the sum is over points x of a Poisson point
process of intensity λ on a bounded region in d-space, and ξx is a functional determined by
the Poisson points near to x, i.e. satisfying an exponential stabilization condition, along
with a moments condition (examples include statistics for proximity graphs, germ-grain
models and random sequential deposition models). A known general result says the µλ-
measures (suitably scaled and centred) of disjoint sets in R

d are asymptotically independent
normals as λ → ∞; here we give an O(λ−1/(2d+ε)) bound on the rate of convergence, and
also a new criterion for the limiting normals to be non-degenerate. We illustrate our result
with an explicit multivariate central limit theorem for the nearest-neighbour graph on
Poisson points on a finite collection of disjoint intervals.

Key words and phrases: Multivariate normal approximation; geometric probability; stabiliza-
tion; central limit theorem; Stein’s method; nearest-neighbour graph.



1 Introduction

There has been considerable recent interest in providing central limit theorems (CLTs) for
certain functionals in geometric probability defined on spatial Poisson point processes. Such
functionals include those associated with random spatial graphs such as the minimal-length
spanning tree or the nearest-neighbour graph, as well as with germ-grain models and random
sequential packing models. These functionals are random variables given by sums of contribu-
tions from points of a Poisson point process in R

d.
A natural extension to random measures may be provided by keeping track of the location

of each contribution in R
d. In this way one can obtain a random field indexed by test functions

on R
d or by subsets of Rd. For example, one can consider the measure induced by a Poisson

process with a point mass at each Poisson point equal to the distance to its nearest-neighbour;
then a typical multivariate statistic induced by this measure is the vector of total edge-lengths
of the nearest-neighbour graph on Poisson points over a finite collection of disjoint subsets of
R

d.
Under certain conditions, it is known [4, 13, 15] that the measures, appropriately scaled

and centred, of disjoint sets (or of test functions with disjoint supports) are asymptotically
distributed as independent normals in the large-intensity limit. The main contribution of the
present paper is to give bounds on the rate of convergence. We illustrate our result with an
application to the nearest-neighbour situation mentioned above.

The unifying concept of stabilization on Poisson points has proved a useful notion of local
dependence in the context of geometric probability. This says, roughly speaking, that the
contribution from a Poisson point is unaffected by changes to the configuration of Poisson
points beyond a certain (random) distance.

The methodology of stabilization has been fruitfully employed, in various guises, to produce
univariate CLTs and laws of large numbers for random quantities in many problems in geometric
probability; see e.g. [4,10,12–16,18–21]. The techniques used in this context include a martingale
method (see for instance [10], and [18] where the method is presented for general stabilizing
functionals in geometric probability), the method of moments [4], and Stein’s method [21], which
we employ in the present paper.

The multivariate case, in which several collections of random variables are considered, has
also received some attention [4, 13–15]. Applications in geometric probability include, for
example, the joint normality of certain random spatial graph functionals defined over a finite
collection of disjoint regions in R

d. There are potential applications to multivariate statistics,
including nonparametric multi-sample tests (see e.g. [22]).

In the present paper, we employ a form of Stein’s method (see [23]), which has the advan-
tage that it can provide rates of convergence in the CLT. In this context, Stein’s method is
a useful tool for establishing normal approximations and CLTs for sums of weakly dependent
random variables. In this paper, the weak dependency structure is provided by the concept of
stabilization on Poisson points.

In the univariate case, the method yields normal approximation of the sum of a single
collection of random variables that are ‘mostly independent’, i.e. exhibiting a local dependency
structure. This structure may be captured using dependency graphs. This method was first
used in the context of geometric probability by Avram and Bertsimas in [2] (using the normal
approximation error bounds of [3]) to provide CLTs for certain random combinatorial structures
that are locally determined in some sense, including the j-th nearest-neighbour graph, and the
Delaunay and Voronoi graphs.

Using the sharper normal approximation bounds of [6], more general results for univariate
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normal approximation based on Stein’s method for random point measures were given by Pen-
rose and Yukich in [21]. That paper is the foundation for the present work, which is its multi-
variate analogue.

Multivariate CLTs for random measures in geometric probability have recently been proved
via the method of moments [4], via Stein’s method [15] and via the martingale method [13]. In
particular, [13] also covers lattice processes (such as percolation), and does not require ‘expo-
nential’ stabilization, and so admits a larger class of measures. The advantage of the results in
the present paper is that information on rates of convergence is provided.

Beyond the context of geometric probability, multivariate central limit theory has been well
studied. Related results include multivariate central limit theorems for sums of independent
random variables given in [8]. In [9,22], multivariate normal approximation bounds are given for
sums of (locally) dependent random variables, often chosen in somewhat special ways, including
certain statistics defined on random graphs. The results in the present paper have the advantage
of being more generally applicable in geometric probability.

As a further contribution, we provide a general criterion for bounding variances below. It
is characteristic of proofs of normality using Stein’s method that one needs to prove such lower
bounds separately. Our criterion adds to those given previously in [4,18], which are not always
directly applicable in the present setting.

The rest of this paper is organized as follows. We state our main general results in Sections
2.1 and 2.2, and prove them in Sections 3 and 4. We briefly discuss in general terms the
applicability of the general results in Section 2.3, and illustrate further with a concrete example
(the k-nearest neighbour graph) in Section 5.

2 Main results

The basic setting follows that of [21]. Let d ∈ N. As in [21], we consider marked point processes
in R

d for the sake of generality. Let (M,FM,PM) be a probability space (the mark space). Let
ξ(x, s;X ) be a measurable [0,∞)-valued function defined for all triples (x, s;X ), where x ∈ R

d,
s ∈ M are such that (x, s) ∈ X , where X ⊂ R

d ×M is finite. When (x, s) ∈ (Rd ×M) \ X , we
abbreviate notation and write ξ(x, s;X ) instead of ξ(x, s;X ∪ {(x, s)}).

Given X ⊂ R
d×M, a > 0 and y ∈ R

d, set y+aX := {(y+ax, s) : (x, s) ∈ X}, i.e. translation
and scaling act only on the ‘spatial’ part of X . For all λ > 0 let

ξλ(x, s;X ) := ξ(x, s; x+ λ1/d(−x+ X )).

Thus ξλ is a ‘scaled-up’ version of ξ, defined on a scaled-up version of the (marked) point set X
dilated around x. We say that ξ is translation-invariant if ξ(x+ y, s; y +X ) = ξ(x, s;X ) for all
y ∈ R

d, all (x, s) ∈ R
d ×M and all finite X ⊂ R

d ×M. When ξ is translation-invariant, the
functional ξλ simplifies to ξλ(x, s;X ) = ξ(λ1/dx, s;λ1/dX ).

For q ∈ [1,∞], let ‖ · ‖q denote the ℓq norm on R
d. In the sequel we will use q = 2 (the

Euclidean norm) and q = ∞. For measurable B ⊂ R
d, let |B| denote the (d-dimensional)

Lebesgue measure of B.
Let κ be a probability density function on R

d with compact support A ⊂ R
d, where A is

non-null (i.e. |A| > 0). We assume throughout that κ is bounded with supremum denoted by
‖κ‖∞ < ∞. For all λ > 0 let Pλ denote a Poisson point process in R

d × M with intensity
measure (λκ(x)dx)× PM(ds).
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2.1 Multivariate normal approximation

We use the following notion of exponential stabilization, as given in [21] (taking the Aλ there
to be A for all λ). For x ∈ R

d and r > 0, let Br(x) denote the Euclidean ball centred at x of
radius r. Let U denote a random element of M with distribution PM, independent of Pλ.

Definition 2.1 ξ is exponentially stabilizing with respect to κ and A if for all λ ≥ 1 and all
x ∈ A, there exists a random variable R := R(x, λ), (a radius of stabilization for ξ at x) such
that

ξλ(x, U ; [Pλ ∩ (Bλ−1/dR(x)×M)] ∪ X ) = ξλ(x, U ;Pλ ∩ (Bλ−1/dR(x)×M)),

for all finite X ⊂ (A \Bλ−1/dR(x))×M, and moreover

lim sup
t→∞

t−1 log

(

sup
λ≥1,x∈A

P[R(x, λ) > t]

)

< 0.

Roughly speaking, R(x, λ) is a radius of stabilization if the value of ξλ at x is unaffected
by changes to the configuration of Poisson points outside Bλ−1/dR(x). Exponential stabilization
is known to hold for many ‘locally determined’ functionals defined on spatial point processes,
and in particular in several cases of interest in geometric probability; see for example [21].
Following [21], we also make the following definition.

Definition 2.2 ξ has a moment of order p > 0 (with respect to κ and A) if

sup
λ≥1,x∈A

E [|ξλ(x, U ;Pλ)|p] <∞. (2.1)

For λ > 0, we define the random weighted point measure µξ
λ on R

d, induced by ξλ, by

µξ
λ :=

∑

(x,s)∈Pλ∩(A×M)

ξλ(x, s;Pλ)δx,

where δx is the point measure at x ∈ R
d.

For Γ ⊂ R
d, let B(Γ) denote the set of bounded Borel-measurable functions on Γ. For

f ∈ B(Γ), let 〈f, µξ
λ〉 :=

∫

Γ
fdµξ

λ. Let Φ denote, as usual, the standard normal distribution
function on R. We recall the following univariate normal approximation result of Penrose and
Yukich (contained in Theorem 2.1 of [21]).

Proposition 2.1 [21] Let ξ be exponentially stabilizing and satisfy the moment condition (2.1)
for some p > 3. For Γ a non-null Borel subset of A, let f ∈ B(Γ) and put T := 〈f, µξ

λ〉. Then
there exists a constant C ∈ (0,∞) depending on d, ξ, f , and κ such that for all λ ≥ 2,

sup
t∈R

∣

∣

∣

∣

P

[

T − E[T ]

(Var[T ])1/2
≤ t

]

− Φ(t)

∣

∣

∣

∣

≤ C(log λ)3dλ(Var[T ])−3/2. (2.2)

For fixed m ∈ N, let Γi, i = 1, . . . ,m be non-null Borel subsets of A ⊂ R
d. For notational

simplicity, for i = 1, . . . ,m and for fi ∈ B(Γi) set Ti := 〈fi, µξ
λ〉 =

∫

Γi
fidµ

ξ
λ. These are

the quantities of interest to us in the present paper. By Proposition 2.1, under appropriate
conditions, we have that, individually, each Ti satisfies a normal approximation result of the
form of (2.2). For the present paper, we will impose one extra condition to control variances
such as Var[Ti].
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(A1) There exist constants Ci ∈ (0,∞) such that for each i, for all λ sufficiently large, Var[Ti] ≥
Ciλ.

Under assumption (A1), the bound on the rate of convergence on the right of (2.2) (in the case
T = Ti) becomes O(λ−1/2(log λ)3d) (compare Corollary 2.1 of [21]), and in particular (2.2) yields
the central limit theorems

Ti − E[Ti]

(Var[Ti])1/2
D−→ N (0, 1),

as λ → ∞, where N (0, 1) is the standard normal distribution on R and ‘
D−→’ denotes conver-

gence in distribution. As discussed in Section 2.2, condition (A1) is true in many cases.
Our main result, Theorem 2.1 below, extends Proposition 2.1 to give a multivariate cen-

tral limit theorem for (Ti : i = 1, . . . ,m), centred and scaled, with a bound on the rate of
convergence. We impose the additional assumptions that (A1) holds and that the sub-regions
Γi are pairwise disjoint and satisfy the natural regularity condition (A2) below. The central
difficulty in extending Proposition 2.1 to a multivariate version is that the Ti are not, in general,
independent. However, with the aid of stabilization we will show that they are ‘asymptotically
independent’ in an appropriate sense.

To state (A2), we introduce some notation. Let ∂B denote the boundary of B ⊂ R
d. For

B ⊂ R
d and x ∈ R

d let dq(x,B) := infy∈B ‖x − y‖q. Also, for B,B′ ⊂ R
d with B ∩ B′ = ∅, let

dq(B,B
′) := infx∈B,y∈B′ ‖x− y‖q, i.e. the shortest distance (in the ℓq sense) between B and B′.

For r > 0, let ∂r(B) denote the r-neighbourhood of the boundary of B ⊂ R
d in the ℓ∞ norm,

that is the set {x ∈ R
d : d∞(x, ∂B) ≤ r}.

(A2) For each i, |∂r(Γi)| = O(r) as r ↓ 0.

Sufficient conditions for (A2) include that each of the Γi is convex, or each is the finite union
of convex regions (e.g. polyhedral). We can now state our main result.

Theorem 2.1 Let ξ be exponentially stabilizing and satisfy the moment condition (2.1) for all
p ≥ 1. Let m ∈ N. Let Γ1,Γ2, . . . ,Γm be fixed disjoint non-null Borel subsets of A satisfying
(A2). For i = 1, . . . ,m, let fi ∈ B(Γi) and set Ti := 〈fi, µξ

λ〉. Suppose that (A1) holds. Let
ε > 0. Then there exists a constant C ∈ (0,∞) depending on d, m, ξ, κ, ε, {fi} and {Γi}, such
that, for all λ ≥ 1,

sup
t1,...,tm∈R

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

Ti − E[Ti]

(Var[Ti])1/2
≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−1/(2d+ε). (2.3)

In particular, from (2.3) we obtain the multivariate central limit theorem that says

(

Ti − E[Ti]

(Var[Ti])1/2
: i = 1, . . . ,m

)

D−→ N (0, Im), (2.4)

as λ→ ∞, whereN (0, Im) is them-dimensional normal distribution with mean 0 and covariance
matrix given by the identity matrix Im. It was already known [4, 13, 15] that under similar
conditions to those of Theorem 2.1 we have (2.4), at least when λ−1Var[Ti] → σ2

i for some
σ2
i ∈ (0,∞). Theorem 2.1 adds to this by providing a bound on the rate of convergence.
As an example of the application of Theorem 2.1, one can take fi = 1Γi

for i = 1, 2, . . . ,m,
where 1Γ is the indicator function of Γ ⊂ R

d. We indicate some particular applications of
Theorem 2.1 in Sections 2.3 and 5. Under additional technical conditions, one can say more
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about the asymptotic behaviour of the variance terms in (2.3); see Section 2.2 below.

Remark. The relatively slow rate of convergence in higher dimensions arises primarily due to
the possibility of strongly dependent points in the neighbourhood of the interface of adjacent
regions. If all of the Γi are separated by a strictly positive distance, then our methods can be
adapted to yield a rate of convergence of the same order as in the univariate result (Proposition
2.1), that is O(λ−1/2(log λ)3d).

For ease of presentation, we prove Theorem 2.1 in Section 3 under the conditions that ξ is
translation-invariant and that the mark space is degenerate (i.e. M = {1}), and so from now
on we suppress any mention of M. In particular, point sets such as X and Pλ will be treated
as (their corresponding) subsets of Rd, and we will write ξ(x;X ) rather than ξ(x, 1;X ) (and
similarly with ξλ). The proof can be adapted for the general marked case, as in [21].

2.2 Control of variances

Recall that Theorem 2.1 is stated under assumption (A1). In this section we discuss conditions
under which one can say something about the variances Var[Ti], and in particular give criteria
for verifying (A1).

It is known [4,15] that if ξ stabilizes exponentially, has a moment of order p > 2, and satisfies
certain extra conditions in the same spirit (see e.g. Theorem 2.1 of [15] for a clear statement),
then

λ−1Var[Ti] → σ2
i , (2.5)

for some σ2
i ∈ [0,∞), given explicitly as an integral in [4, 15]. In cases where (2.5) holds, then

clearly (A1) is equivalent to the condition that σ2
i > 0.

One approach to the verification of (A1) is to compute σ2
i by evaluating the integral formula

explicitly or at least to verify that it is strictly positive. In some cases, this is possible; see
Section 5 for an example.

However, such cases seem to be the exception rather than the rule, so it is useful to have some
other criterion for verifying (A1). No attempt is made in [15] to establish general conditions
for σ2

i to be strictly positive. While [4] does contain such conditions, these are given only for
fi ≡ 1, and since here we are interested in multivariate CLTs with at least two different fis, it
is desirable to improve on the criteria in [4].

We now give a sufficient condition for (A1) to hold, similar in spirit to those used to bound
limiting variances away from zero in [18] and [4]. As in those papers, we use a form of external
stabilization, which roughly speaking says that not only do Poisson points beyond the radius of
stabilization for x not influence x, but also x does not influence these points.

For notational convenience we here consider only the unmarked case (equivalent to M =
{1}). For simplicity, we also assume translation-invariance. Given translation-invariant ξ(x;X )
defined for x ∈ X and finite X ⊂ R

d, set

Hξ(X ) :=
∑

x∈X

ξ(x;X ); Hξ,f
λ (X ) :=

∑

x∈X

f(x)ξλ(x;X ).

Let 0 be the origin in R
d and write Br for the ball Br(0). For K > 0, a locally finite set X

in R
d is said to be K-externally stable if for all finite A ⊂ R

d \BK , x ∈ A and y ∈ X ∩BK , we
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have the three conditions:

ξ(0; (X ∩BK) ∪ A) = ξ(0;X ∩BK);

ξ(x; (X ∩BK) ∪ A ∪ {0}) = ξ(x; (X ∩BK) ∪ A);

ξ(y; (X ∩BK) ∪ A ∪ {0})− ξ(y; (X ∩BK) ∪ A) = ξ(y; (X ∩BK) ∪ {0})− ξ(y;X ∩BK).

Suppose X is a point process (i.e. a random locally finite set in R
d). A random variable R,

taking values in (0,∞], is said to be a radius of external stabilization for X if, whenever R is
finite, the point process X is R-externally stable. Note that by definition R ≡ ∞ is a radius of
external stabilization but we are interested in the cases where a radius of external stabilization
R exists with P[R <∞] > 0. When R <∞, we say that external stabilization holds for X .

For a point process X in R
d with radius of external stabilization R, there is a random variable

∆(X ;R) such that whenever R <∞, we have

Hξ((X ∩BR) ∪ A ∪ {0})−Hξ((X ∩BR) ∪ A) = ∆(X ;R)

for all finite A ⊂ R
d \ BR. As a matter of convention we put ∆(X ;R) = 0 whenever R = ∞.

We refer to ∆(X ;R) as the add one cost associated with X and R. In principle, the external
stabilization condition R <∞ is a stronger condition than the existence of this ∆(X ;R), which
is referred to as ‘strong stabilization’ in [4]. In all the examples that we are aware of, however,
if strong stabilization holds then so does external stabilization. Also, the external stabilization
condition that we shall require is only that P[R < ∞] > 0, whereas the corresponding strong
stabilization in [4] is required to hold with probability 1.

Let B̃(Γ) be the class of functions in B(Γ) which are almost everywhere continuous. Let X
denote a random d-vector with density κ, independent of Pλ, and for λ > 0 let Hλ denote a
homogeneous Poisson point process in R

d with intensity λ. We now state our second result,
which provides general criteria for (A1) to hold based on external stabilization. It is proved in
Section 4.

Theorem 2.2 Suppose that ξ is translation-invariant. Suppose that there is a radius of external
stabilization R for H1 with associated add one cost ∆(H1;R), such that

P[{R <∞} ∩ {∆(H1;R) 6= 0}] > 0. (2.6)

Let f ∈ B̃(Γ), with f(x)κ(x) not almost everywhere zero, and suppose for some λ0 > 0 and
p > 2 that

sup
λ≥λ0

E

[∣

∣

∣
Hξ,f

λ (Pλ ∪ {X})−Hξ,f
λ (Pλ)

∣

∣

∣

p]

<∞. (2.7)

Suppose, also, either that f ≡ 1 or that for all K > 0 and Lebesgue-almost all x ∈ R
d with

κ(x) > 0 we have

∫

BK

E[|ξ(y;Hκ(x) ∪ {0})− ξ(y;Hκ(x))|]dy <∞. (2.8)

Then lim infλ→∞(λ−1Var[〈f, µξ
λ〉]) > 0.

Remarks. The additional moments condition (2.7) is weaker in principle than the correspon-
ding moments conditions required for similar lower bounds on variances in [18] and [4] because
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in those references the moments condition is for a point inserted into a binomial point process
but here the moments conditions (2.7) and (2.8) are for a point inserted into a Poisson point
process. Note that the argument in [4] requires the ‘bounded moments condition’ (eqn (2.5)
of [4]) as a condition for parts (ii) and (iii) of Theorem 2.2 of [4] as well as for part (i); we thank
Joseph Yukich for confirming this in a personal communication.

As in [4, 18], Theorem 2.2 requires external stabilization. Our condition (2.6) says that the
add one cost ∆(X ;R) is not identically zero. In principle this is weaker than the corresponding
condition in [4, 18] where it is assumed that ∆(X ;R) has a non-degenerate distribution. These
slightly weaker conditions are possible because in the current paper we are considering only
Poisson point processes, not binomial point processes as in [4, 18].

The conclusion in Theorem 2.2 provides a lower bound for the variance of λ−1/2〈f, µξ
λ〉,

as required in condition (A1). The lower bounds for the limiting variances given in [4, 18]
(see e.g. Theorem 2.2(iii) and the subsequent Remark (iii) of [4]) are given only for the case
with f ≡ 1. Here, in Theorem 2.2 we allow for other choices of f but restrict attention to
almost everywhere continuous f and also (except for the case f ≡ 1) require the extra moments
condition (2.8). We note that a sufficient condition for (2.8) is that we have the two conditions

∫

BK

E[|ξ(y;Hκ(x) ∪ {0})|]dy <∞; (2.9)

∫

BK

E[|ξ(y;Hκ(x))|]dy <∞. (2.10)

Condition (2.10) is similar to the moments condition (2.1) used earlier. Condition (2.9) is
slightly different but usually true in examples satisfying (2.1). For example, if ξ(x;X ) is the
logarithm of the distance from x to its nearest neighbour in X (examples of this type appear
in [5]), then the integrand in (2.9) blows up as y approaches 0, but only slowly, and (2.9) holds.

2.3 Indication of applications

In applying Theorem 2.1, one needs to check that the stabilization and moments conditions
given in Definitions 2.1 and 2.2 hold. These conditions, or related versions thereof, are known
to hold for many problems of interest in geometric probability; see [4] and [21] for an indication
of problems for which exponential stabilization and moment bounds are satisfied.

One also needs to verify the variance bound (A1), as discussed in Section 2.2. For the
special case with fi constant, condition (A1) has been demonstrated for many examples, see for
example [2, 4, 18].

For the general case under consideration here, we can often verify (A1) via Theorem 2.2. As
mentioned before, the moments conditions in Theorem 2.2 usually hold for examples satisfying
the moments condition of Definition 2.2. Likewise, external stabilization holds for many of the
examples satisfying the exponential stabilization condition of Definition 2.1. In fact, external
stabilization is demonstrated for numerous examples in [18]; see also [4, 19]. In many cases,
external stabilization can be shown by constructing a configuration, having positive probability,
of many points in an ‘annulus’ around the origin and an empty ‘moat’ in a smaller annulus,
that ensures sufficient independence; see [2] for such a construction (in a similar context but not
explicitly mentioning stabilization) for the total length of the j-th nearest-neighbour, Voronoi,
and Delaunay graphs. These examples are also considered in [18], along with other examples
such as the sphere of influence graph and Gabriel graph. External stabilization for random
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sequential adsorption and related deposition processes (with Poisson input) is demonstrated
in [19].

To sum up; for many examples the conditions of both Theorem 2.1 and Theorem 2.2 hold,
with Theorem 2.2 providing the means to verify the condition (A1) for Theorem 2.1, so that
one can conclude (2.3) in these examples.

In Section 5 we give an example of our result as applied to the k-nearest neighbour graph.
In particular, we give a multivariate CLT with explicit variance scalings in the case of the
nearest-neighbour (directed) graph on disjoint subsets of the real line (Theorem 5.1 below).

3 Towards a proof of Theorem 2.1

Throughout this section, we assume that Γ1,Γ2, . . . ,Γm are (arbitrary) non-null Borel subsets
of the bounded region A ⊂ R

d, such that Γi ∩ Γj = ∅ for i 6= j, and condition (A2) holds. Also,
for each i we have a function fi ∈ B(Γi).

For fixed α > 0, let sλ := αλ−1/d log λ, and let Γbd
i denote the sλ ‘boundary region’ of Γi ⊆ A,

in the sense

Γbd
i :=

{

x ∈ Γi : d∞(x, ∂Γi) ≤ αλ−1/d log λ
}

= Γi ∩ ∂sλ(Γi). (3.1)

The remainder of the set Γi we simply call the ‘interior’ and denote by Γin
i , where

Γin
i :=

{

x ∈ Γi : d∞(x, ∂Γi) > αλ−1/d log λ
}

= Γi \ ∂sλ(Γi).

As previously mentioned, we assume that ξ is translation-invariant, and that M = {1}.
Define

T bd
i :=

∫

Γbd
i

fidµ
ξ
λ; and T in

i :=

∫

Γin
i

fidµ
ξ
λ,

so that Ti = T in
i + T bd

i . To prepare for the proof of Theorem 2.1 we need some auxiliary
lemmas. For the subsequent results, we will need the following covering of scaled-up Borel
regions λ1/dB ⊂ R

d by cubes of side 1.
First we need some more notation. Let card(X ) denote the cardinality of set X . For x ∈ R

d,
let Qx denote the unit-volume ℓ∞ ball in R

d with centre x (i.e., the unit d-cube at x). For a
Borel set B ⊆ A ⊂ R

d, let

Zλ(B) :=
{

x ∈ Z
d : Qx ∩ λ1/dB 6= ∅

}

, (3.2)

and set nλ(B) := card(Zλ(B)). Then the covering of λ1/dB is

Qλ(B) := {Qz : z ∈ Zλ(B)}. (3.3)

The next result gives error bounds for approximating the volume of λ1/dΓi or of λ
1/dΓbd

i (as
defined at (3.1)) by the number of unit cubes in Z

d in its covering (as defined at (3.2) and (3.3)).

Lemma 3.1 Let Γi be a non-null Borel subset of A ⊂ R
d such that |∂r(Γi)| = O(r) as r ↓ 0.

Then, as λ→ ∞,

nλ(Γi)− |λ1/dΓi| = O
(

λ(d−1)/d
)

. (3.4)

Define Γbd
i as at (3.1). Then, as λ→ ∞,

nλ(Γ
bd
i )− |λ1/dΓbd

i | = O
(

λ(d−1)/d log λ
)

. (3.5)

9



Proof. There exists a constant c ∈ (0,∞) (depending only on d) such that, for any λ > 0, and
any non-null Borel subset B of A,

λ1/dB ⊆
⋃

z∈Zλ(B)

Qz ⊆ λ1/dB ∪ ∂c(λ1/dB),

and hence

|λ1/dB| ≤ nλ(B) ≤ |λ1/dB|+ |∂c(λ1/dB)| = |λ1/dB|+ λ|∂cλ−1/d(B)|. (3.6)

In the case B = Γi, the regularity assumption that |∂r(Γi)| = O(r) as r ↓ 0 implies that
|∂cλ−1/d(Γi)| = O(λ−1/d). Thus (3.4) follows from (3.6).

In the case B = Γbd
i , we have that

|∂cλ−1/d(Γbd
i )| ≤ |∂cλ−1/d+sλ

(Γi)| = O(sλ),

as λ→ ∞, again by the regularity assumption on Γi. Thus (3.6) yields (3.5) in this case. �

Once more consider a Borel subset B of A ⊂ R
d and the covering Qλ(B) of λ1/dB. For

all z ∈ Zλ(B), the number of points of Pλ ∩ λ−1/dQz is a Poisson random variable Nz with
parameter νz := λ

∫

λ−1/dQz
κ(x)dx. Assuming νz > 0, choose an ordering on the points of

Pλ ∩ λ−1/dQz uniformly at random from all Nz! possibilities. List the points as Xz,1, . . . , Xz,Nz ,
where conditional on the value of Nz, the random variables Xz,k, k = 1, 2, . . . , Nz are i.i.d. on
λ−1/dQz with a density κz(·) := κ(·)/

∫

λ−1/dQz
κ(x)dx. Thus we have the representation

Pλ ∩ B =
⋃

z∈Zλ(B)

Nz
⋃

k=1

({Xz,k} ∩ B).

Then for f in B(B), we can express 〈f, µξ
λ〉 as follows:

〈f, µξ
λ〉 =

∑

z∈Zλ(B)

Nz
∑

k=1

ξλ(Xz,k;Pλ) · f(Xz,k) · 1B(Xz,k). (3.7)

For all z ∈ Zλ(B) and for all k ∈ N, let Rz,k denote the radius of stabilization of ξ at Xz,k

if 1 ≤ k ≤ Nz and let Rz,k = 0 otherwise. Define the event Ez,k := {Rz,k ≤ α log λ}. We define
here the function T̃ (B; f) as follows, the idea being that T̃ (B; f) is, with high probability, the
same as 〈f, µξ

λ〉, but exhibits a much more localized dependency structure. Set

T̃ (B; f) :=
∑

z∈Zλ(B)

Nz
∑

k=1

ξλ(Xz,k;Pλ) · 1Ez,k
· f(Xz,k) · 1B(Xz,k), (3.8)

where we use 1E to denote the indicator random variable of the event E.
Recall that Γi, i = 1, 2, . . . ,m are disjoint non-null Borel regions in A ⊂ R

d and fi ∈ B(Γi)
for i = 1, 2, . . . ,m. Then for each i, T̃ (Γi; fi) is defined by (3.8). In the same way as we use the
abbreviations Ti, T

bd
i and T in

i , we let T̃i := T̃ (Γi; fi), T̃
bd
i := T̃ (Γbd

i ; fi), and T̃
in
i := T̃ (Γin

i ; fi).
Thus T̃i = T̃ bd

i + T̃ in
i .

For z ∈ Zλ(B) let Yz(B; f) be the contribution to T̃ (B; f) from the points in λ−1/dQz, i.e.

Yz(B; f) :=
Nz
∑

k=1

ξλ(Xz,k;Pλ) · 1Ez,k
· f(Xz,k) · 1B(Xz,k), (3.9)
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so that T̃ (B; f) =
∑

z∈Zλ(B) Yz(B; f).

Let Aλ, λ ≥ 1 be a family of Borel subsets of A ⊂ R
d. The next two results show that the

moments condition (2.1) implies bounds on the moments of Yz(Aλ; f) for f ∈ B(A). When we
come to apply the two lemmas below, we will be taking Aλ = Γi or Aλ = Γbd

i .

Lemma 3.2 Let Aλ, λ ≥ 1 be a family of Borel subsets of A ⊂ R
d. If (2.1) holds for some

p > 0, then there is a constant C ∈ (0,∞) such that for all λ ≥ 1, all k ≥ 1 and z ∈ Zλ(Aλ)

E[|ξλ(Xz,k;Pλ) · 1Aλ
(Xz,k) · 1{k≤Nz}|p] ≤ C. (3.10)

Proof. It suffices to consider the case with Aλ = A for all λ. The proof of the lemma closely
follows that of Lemma 4.2 in [21], although our covering is somewhat different. In the notation
of the proof of Lemma 4.2 of [21], we have ρλ = 1 and νi = νzi ≡ λ

∫

λ−1/dQzi
κ(x)dx ≤ ‖κ‖∞,

where we have written Zλ(B) = {z1, . . . , znλ(B)}. Then, following the argument in [21], we
obtain (3.10). �

Lemma 3.3 Let Aλ, λ ≥ 1, be a sequence of Borel subsets of A ⊂ R
d, and suppose f ∈ B(A).

If (2.1) holds for some p > 1, then for any q ∈ (1, p) there is a constant C ∈ (0,∞) such that
for all λ ≥ 1 and all z ∈ Zλ(Aλ)

‖Yz(Aλ; f)‖qq ≤ C. (3.11)

Proof. The proof closely follows that of Lemma 4.3 in [21], again with ρλ there equal to 1 (and
νi ≤ ‖κ‖∞). Thus, with the use of Lemma 3.2 (and the boundedness of f), we obtain (3.11). �

Lemma 3.4 Suppose that ξ is exponentially stabilizing and satisfies the moments condition
(2.1) for some p > 3. Then there exists a constant C ∈ (0,∞) such that for all λ ≥ 2

sup
t∈R

∣

∣

∣

∣

∣

P

[

T̃i − E[T̃i]

(Var[T̃i])1/2
≤ t

]

− Φ(t)

∣

∣

∣

∣

∣

≤ Cλ(Var[T̃i])
−3/2(log λ)3d. (3.12)

Moreover, (3.12) holds with T̃i replaced by T̃ in
i everywhere.

Proof. The statement for T̃i follows from equation (4.18) in [21] with ρλ = O(log λ), q = 3,
and taking the Aλ of [21] to be Γi. In equation (4.18) of [21], T ′

λ is the equivalent of our T̃i, Tλ
is our Ti, and S is our (T̃i −E[T̃i])(Var[T̃i])

−1/2. The statement for T̃ in
i follows in the same way,

this time taking the Aλ of [21] to be Γin
i . �

Lemma 3.5 Suppose that (2.1) holds for some p > 2. Then there exist constants C1, C2, C3 ∈
(0,∞) such that, for all λ ≥ 2,

Var[T̃ bd
i ] ≤ C1λ

(d−1)/d(log λ)d+1, (3.13)

Var[T̃i] ≤ C2λ(log λ)
d, and (3.14)

Var[T̃ in
i ] ≤ C3λ(log λ)

d. (3.15)
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Proof. First we prove (3.13). Consider the covering Qλ(Γ
bd
i ) of λ1/dΓbd

i by unit d-cubes, as
defined at (3.3). For z ∈ Zλ(Γ

bd
i ) let Yz(Γ

bd
i ; fi) be the contribution to T̃ bd

i from the points in
λ−1/dQz, as defined at (3.9), that is

Yz(Γ
bd
i ; fi) :=

Nz
∑

k=1

ξλ(Xz,k;Pλ) · 1Ez,k
· fi(Xz,k) · 1Γbd

i
(Xz,k). (3.16)

Now, using the representation T̃ bd
i =

∑

z∈Zλ(Γ
bd
i ) Yz(Γ

bd
i ; fi), we have

Var[T̃ bd
i ] =

∑

z

Var[Yz(Γ
bd
i ; fi)] +

∑

z 6=w

Cov[Yz(Γ
bd
i ; fi), Yw(Γ

bd
i ; fi)]. (3.17)

By the assumption that (2.1) holds for some p > 2, by taking q = 2 and Aλ = Γbd
i in Lemma

3.3 we have that Var[Yz(Γ
bd
i ; fi)] ≤ V , for some constant V < ∞, for all z ∈ Zλ(Γ

bd
i ). So by

the Cauchy-Schwarz inequality we have Cov[Yz(Γ
bd
i ; fi), Yw(Γ

bd
i ; fi)] ≤ V . Also, Yz(Γ

bd
i ; fi) and

Yw(Γ
bd
i ; fi) are independent if d2(Qz, Qw) > 2α log λ (by the definition of Ez,k). Further, given

z, the number of w for which d2(Qz, Qw) ≤ 2α log λ is O((log λ)d). Hence (3.17) implies that

Var[T̃ bd
i ] ≤ nλ(Γ

bd
i )(V +O((log λ)d)). (3.18)

Then by (3.5) we have that

nλ(Γ
bd
i ) = λ|Γbd

i |+O
(

λ(d−1)/d log λ
)

= O(λ(d−1)/d log λ), (3.19)

using (3.1) and (A2). So from (3.18) and (3.19) we obtain (3.13).
The proof of (3.14) follows similarly, using Aλ = Γi for all λ in Lemma 3.3 and (3.4) in place

of (3.5). Finally, (3.15) follows from (3.14), (3.13) and the Cauchy-Schwarz inequality, since
T̃ in
i = T̃i − T̃ bd

i . �

Lemma 3.6 Suppose that ξ is exponentially stabilizing and satisfies the moments condition
(2.1) for some p > 3. Then there exists a constant C ∈ (0,∞) such that for any δ > 0, all
λ ≥ 2, and any t ∈ R

P

[
∣

∣

∣

∣

∣

T̃i − E[T̃i]

(Var[T̃i])1/2
− t

∣

∣

∣

∣

∣

≤ δ

]

≤
√

2

π
δ + C(log λ)3dλ(Var[T̃i])

−3/2, (3.20)

and also

P

[∣

∣

∣

∣

∣

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
− t

∣

∣

∣

∣

∣

≤ δ

]

≤ 2

√

2

π
δ + C(log λ)3dλ(Var[T̃i])

−3/2

+P

[∣

∣

∣

∣

∣

T̃ bd
i − E[T̃ bd

i ]

(Var[T̃i])1/2

∣

∣

∣

∣

∣

> δ

]

. (3.21)

Proof. First we prove (3.20). For the duration of this proof, write

F (t) = P

[

T̃i − E[T̃i]

(Var[T̃i])1/2
≤ t

]

.
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Then we have that for t ∈ R and δ > 0

P

[∣

∣

∣

∣

∣

T̃i − E[T̃i]

(Var[T̃i])1/2
− t

∣

∣

∣

∣

∣

≤ δ

]

= F (t+ δ)− F (t− δ)

= Φ(t+ δ)− Φ(t− δ) + [F (t+ δ)− Φ(t+ δ)]− [F (t− δ)− Φ(t− δ)]

≤ |Φ(t+ δ)− Φ(t− δ)|+ |F (t+ δ)− Φ(t+ δ)|+ |F (t− δ)− Φ(t− δ)| .

Then (3.20) follows from the Mean Value Theorem (applied to the first term on the right of the
above inequality) and Lemma 3.4 (applied to the other two terms). Finally, we have that for
δ > 0

P

[
∣

∣

∣

∣

∣

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
− t

∣

∣

∣

∣

∣

≤ δ

]

≤ P

[
∣

∣

∣

∣

∣

T̃i − E[T̃i]

(Var[T̃i])1/2
− t

∣

∣

∣

∣

∣

≤ 2δ

]

+ P

[
∣

∣

∣

∣

∣

T̃ bd
i − E[T̃ bd

i ]

(Var[T̃i])1/2

∣

∣

∣

∣

∣

> δ

]

.

Then using (3.20) yields (3.21). �

Lemma 3.7 Suppose that the moments condition (2.1) holds for all p ≥ 1, and condition (A2)
holds. Let k be an even positive integer. Then there exists a constant C ∈ (0,∞) (depending on
k) such that for all λ ≥ 2,

E

[

∣

∣

∣
T̃ bd
i − E[T̃ bd

i ]
∣

∣

∣

k
]

≤ Cλk(d−1)/(2d)(log λ)k(1+d)/2. (3.22)

Proof. Again consider the covering Qλ(Γ
bd
i ) of λ1/dΓbd

i as defined at (3.3). For z ∈ Zλ(Γ
bd
i ), let

Ȳz be the contribution to T̃ bd
i − E[T̃ bd

i ] from cube Qz, that is Ȳz := Yz(Γ
bd
i ; fi) − E[Yz(Γ

bd
i ; fi)]

where Yz(Γ
bd
i ; fi) is given by (3.16). Thus, for all z ∈ Zλ(Γ

bd
i ), E[Ȳz] = 0 and Var[Ȳz] ≤ V for

constant V , by Lemma 3.3.
Let k be an even positive integer. Then

E

[

∣

∣

∣
T̃ bd
i − ET̃ bd

i

∣

∣

∣

k
]

=
∑

z1∈Zλ(Γ
bd
i )

∑

z2∈Zλ(Γ
bd
i )

· · ·
∑

zk∈Zλ(Γ
bd
i )

E
[

Ȳz1Ȳz2 · · · Ȳzk
]

.

The term E
[

Ȳz1Ȳz2 · · · Ȳzk
]

will vanish if any of the cubes corresponding to the Ȳzj is farther
than 2α log λ from all the other cubes (since then it will be independent of the other Ȳzj and
has expectation zero). Thus many of the terms in the last sum are zero. We proceed to count
the possible non-zero contributions. Consider constructing the geometric graph (in the sense
of [12]) on vertices z1, z2, . . . , zk: that is, connect by an edge any two vertices that lie within
distance 2 + 2α log λ of each other. In particular, the absence of an edge between z1 and z2
implies that the cubes Qz1 , Qz2 are at distance more than 2α log λ. For a non-zero contribution
to the sum from a particular vertex set z1, z2, . . . , zk, a necessary condition is that the geometric
graph just described has no isolated vertices. It follows that the graph must have no more than
k/2 connected components. Let i be denoted a ‘free’ index if zi is lexicographically the first
vertex of a component of the graph; each ‘free’ index determines the location of a connected
component. There are at most k/2 ‘free’ indices of (z1, . . . , zk). Each index that is not ‘free’
(and so lies in the same connected component as a ‘free’ index) has O((log λ)d) possible values.

Further, E
[

Ȳz1Ȳz2 · · · Ȳzk
]

≤ C for some constant C, by Lemma 3.3 (given the moments
condition (2.1) for all p ≥ 1) and Hölder’s inequality. Thus for some other constant also
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denoted C,

∑

z1∈Zλ(Γ
bd
i )

∑

z2∈Zλ(Γ
bd
i )

· · ·
∑

zk∈Zλ(Γ
bd
i )

E
[

Ȳz1Ȳz2 · · · Ȳzk
]

≤ C(nλ(Γ
bd
i ))k/2(log λ)kd/2

≤ Cλk(d−1)/(2d)(log λ)k/2(log λ)kd/2,

the final inequality by (3.5), (3.1) and (A2). Hence we have (3.22). �

The next lemma says that given condition (A1), we can obtain lower bounds on the variances
of T̃ in

i and T̃i. We will need the following result from [21] (see (4.17) therein), which says that
if ξ is exponentially stabilizing and satisfies the moments condition (2.1) for some p > 2, then

∣

∣

∣
Var[T̃i]− Var[Ti]

∣

∣

∣
≤ Cλ−2. (3.23)

Lemma 3.8 Suppose that (A1) and (A2) are satisfied, and that the moments condition (2.1)
holds for all p ≥ 1. Then there exist constants C ∈ (0,∞) and λ0 ∈ [1,∞) such that for all
λ ≥ λ0

Var[T̃i] ≥ Cλ, and (3.24)

Var[T̃ in
i ] ≥ Cλ. (3.25)

Proof. These follow in a straightforward manner from (3.23), (A1), (3.13), (3.14) and the
Cauchy-Schwarz inequality. �

Lemma 3.9 Suppose that ξ is exponentially stabilizing and satisfies the moments condition
(2.1) for all p ≥ 1. Suppose conditions (A1) and (A2) hold. Then for m ∈ N and any ε > 0,
there exists C = C(m, ε) ∈ (0,∞) such that for all λ ≥ 1 and all ti ∈ R

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

T̃i − E[T̃i]

(Var[T̃i])1/2
≤ ti

}]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−1/(2d+ε)+

∣

∣

∣

∣

∣

m
∏

i=1

P

[

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
≤ ti

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

. (3.26)

Proof. We abbreviate our notation for the duration of the current proof by setting σi :=
(Var[T̃i])

1/2. Then we have

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

(T̃i − E[T̃i])σ
−1
i ≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

+
m
∑

i=1

P

[

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ ti, (T̃i − E[T̃i])σ

−1
i > ti

]

+
m
∑

i=1

P

[

(T̃ in
i − E[T̃ in

i ])σ−1
i > ti, (T̃i − E[T̃i])σ

−1 ≤ ti

]

. (3.27)
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For random variables X,X1, X2 with X = X1 +X2 it holds that for any t ∈ R and any z > 0

P[X1 ≤ t,X > t] ≤ P[|X2| > z] + P[|X1 − t| ≤ z],

and the same upper bound holds for P[X1 > t,X ≤ t]. Hence for any λ ≥ 1 and β > 0 we have

max
(

P

[

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ t, (T̃i − E[T̃i])σ

−1
i > t

]

,

P

[

(T̃ in
i − E[T̃ in

i ])σ−1
i > t, (T̃i − E[T̃i])σ

−1
i ≤ t

])

≤ P

[∣

∣

∣
(T̃ bd

i − E[T̃ bd
i ])σ−1

i

∣

∣

∣
> λ−β

]

+ P

[∣

∣

∣
(T̃ in

i − E[T̃ in
i ])σ−1

i − t
∣

∣

∣
≤ λ−β

]

. (3.28)

Then, from (3.27) and (3.28)
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

(T̃i − E[T̃i])σ
−1
i ≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

+2
m
∑

i=1

P

[∣

∣

∣
(T̃ bd

i − E[T̃ bd
i ])σ−1

i

∣

∣

∣
> λ−β

]

+ 2
m
∑

i=1

P

[∣

∣

∣
(T̃ in

i − E[T̃ in
i ])σ−1

i − ti

∣

∣

∣
≤ λ−β

]

. (3.29)

Since d2(λ
1/dΓin

i , λ
1/dΓin

j ) is at least 2α log λ for i 6= j, T̃ in
i , 1 ≤ i ≤ m is a sequence of mutually

independent random variables, so that

P

[

m
⋂

i=1

{

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ ti

}

]

=
m
∏

i=1

P

[

(T̃ in
i − E[T̃ in

i ])σ−1
i ≤ ti

]

. (3.30)

Also, from Markov’s inequality, we have that, for k ∈ 2N,

P

[∣

∣

∣
(T̃ bd

i − E[T̃ bd
i ])σ−1

i

∣

∣

∣
> λ−β

]

≤ E

[

∣

∣

∣
T̃ bd
i − E[T̃ bd

i ]
∣

∣

∣

k
]

(

Var[T̃i]
)−k/2

λkβ. (3.31)

Then we obtain, from (3.31), with (3.22) and (3.24),

P

[∣

∣

∣
(T̃ bd

i − E[T̃ bd
i ])σ−1

i

∣

∣

∣
> λ−β

]

≤ Cλk(β−1/(2d))(log λ)k(1+d)/2; (3.32)

this then gives a bound for the penultimate sum in (3.29). To bound the final sum in (3.29),
taking δ = λ−β we have from (3.21), (3.32) and (3.24) that

P

[∣

∣

∣
(T̃ in

i − E[T̃ in
i ])σ−1

i − ti

∣

∣

∣
≤ λ−β

]

≤ 2

√

2

π
λ−β + C(log λ)3dλ−1/2 + Cλk(β−1/(2d))(log λ)k(1+d)/2. (3.33)

To obtain the best rates of convergence via this method, we want to maximize the lowest power of
λ−1 on the right-hand sides of (3.32) and (3.33). So we choose β such that −β = k (β − 1/(2d)),
that is, take

β =
k

2d(k + 1)
. (3.34)
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For any ε > 0 we can choose k large enough in (3.34) to give 1/(2d) > β ≥ 1/(2d+ ε/2). Then,
for λ sufficiently large, λ−1/(2d+ε) ≥ λ−1/(2d+ε/2)(log λ)k(1+d)/2. Now from (3.29) and (3.30), with
the bounds (3.32) and (3.33) we obtain (3.26). This completes the proof of the lemma. �

Proof of Theorem 2.1. To complete the proof we proceed in a similar manner to [21]. Let

Eλ :=
m
⋂

i=1

⋂

z∈Zλ(Γi)

Nz
⋂

k=1

Ez,k,

recalling the definition of the event Ez,k just below (3.7). By standard Palm theory (e.g. Theorem
1.6 in [12]) and exponential stabilization (see (4.11) in [21]), we have that P[Ec

λ] ≤ Cλ−3 for α
sufficiently large and some C ∈ (0,∞). Then |T̃i − Ti| = 0 except possibly on the set Ec

λ, which
has probability less than Cλ−3.

For i = 1, . . . ,m, let Ki := (Var[T̃i])
−1/2(T̃i−E[T̃i]) and Zi := (Var[T̃i])

−1/2(Ti−E[Ti]). Then
for δ > 0 we have that for any ti ∈ R

{(Zi ≤ ti)∆(Ki ≤ ti)} ⊆ {|Ki − ti| ≤ δ} ∪ {|Zi −Ki| ≥ δ},

so that
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{Zi ≤ ti}
]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{Ki ≤ ti}
]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

+
m
∑

i=1

P [|Ki − ti| ≤ δ] +
m
∑

i=1

P [|Zi −Ki| ≥ δ] . (3.35)

Then, using (3.26) for the first term on the right-hand side of the inequality in (3.35), and (3.20)
with (3.24) for the second, we obtain
∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{Zi ≤ ti}
]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−1/(2d+ε) +

∣

∣

∣

∣

∣

m
∏

i=1

P

[

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
≤ ti

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

+Cδ + C(log λ)3dλ−1/2 +
m
∑

i=1

P [|Zi −Ki| ≥ δ] . (3.36)

We now consider the second term on the right-hand side of (3.36). For ease of notation, write

Gi(t) := P

[

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
≤ t

]

,

for i = 1, . . . ,m. For complex x1, . . . , xn, y1, . . . , yn with modulus at most 1 we have |∏n
i=1 xi−

∏n
i=1 yi| ≤

∑n
i=1 |xi − yi| (see e.g. p. 110 of [7]). Hence

∣

∣

∣

∣

∣

m
∏

i=1

Gi(ti)−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤
m
∑

i=1

|Gi(ti)− Φ(ti)| . (3.37)

Writing

Hi(t) := P

[

T̃ in
i − E[T̃ in

i ]

(Var[T̃ in
i ])1/2

≤ t

]

,
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we have that, for i = 1, . . . ,m

|Gi(ti)− Φ(ti)| ≤ |Hi(ti(1 + γi))− Φ(ti(1 + γi))|+ |Φ(ti(1 + γi))− Φ(ti)| , (3.38)

where 1 + γi :=
(

Var[T̃i]

Var[T̃ in
i ]

)1/2

. Then, using Lemma 3.4 we have that the first term on the

right-hand side of (3.38) satisfies

|Hi(ti(1 + γi))− Φ(ti(1 + γi))| ≤ C(log λ)3dλ(Var[T̃ in
i ])−3/2 ≤ Cλ−1/2(log λ)3d, (3.39)

by (3.25). In order to deal with the second term on the right-hand side of (3.38), we need to
estimate γi. We note that

Var[T̃i]

Var[T̃ in
i ]

= 1 +
Var[T̃ bd

i ]

Var[T̃ in
i ]

+
2Cov[T̃ in

i , T̃
bd
i ]

Var[T̃ in
i ]

.

Then using the upper and lower variance bounds (3.13), (3.15), (3.25), and the Cauchy-Schwarz
inequality, yields

Var[T̃i]

Var[T̃ in
i ]

= 1 +O(λ−1/(2d)(log λ)(2d+1)/2),

so that

γi = O(λ−1/(2d)(log λ)(2d+1)/2). (3.40)

Since for all s ≤ t we have |Φ(s)−Φ(t)| ≤ (t−s) sups≤u≤t ϕ(u) (where ϕ is the standard normal
density function), we have

sup
ti

|Φ(ti(1 + γi))− Φ(ti)|

≤ C sup
ti

(

|ti|λ−1/(2d)(log λ)(2d+1)/2 sup
|u−ti|≤tiCλ−1/(2d)(log λ)(2d+1)/2

ϕ(u)

)

≤ Cλ−1/(2d)(log λ)(2d+1)/2. (3.41)

So, for the second term on the right-hand side in (3.36), we obtain from (3.37), (3.38), (3.39)
and (3.41)

sup
t1,...,tm

∣

∣

∣

∣

∣

m
∏

i=1

P

[

T̃ in
i − E[T̃ in

i ]

(Var[T̃i])1/2
≤ ti

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ C(log λ)3dλ−1/2 + Cλ−1/(2d)(log λ)(2d+1)/2. (3.42)

We now move on to the fifth term on the right-hand side of (3.36). We have

|Zi −Ki| = (Var[T̃i])
−1/2|(Ti − E[Ti])− (T̃i − E[T̃i])| ≤ (Var[T̃i])

−1/2
(

|Ti − T̃i|+ E[|Ti − T̃i|]
)

,

and from just below (4.19) in [21], we have that this is bounded by Cλ−3 except possibly on the
set Ec

λ which has probability less than Cλ−3. Thus by (3.36) with δ = Cλ−3, and using (3.42)
for the second term on the right-hand side of (3.36), we obtain

sup
t1,...,tm

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{Zi ≤ ti}
]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−1/(2d+ε) + C(log λ)3dλ−1/2

+Cλ−1/(2d)(log λ)(2d+1)/2 + Cλ−3 = O(λ−1/(2d+ε)). (3.43)
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By the triangle inequality we have

sup
t1,...,tm

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

Ti − E[Ti]

(Var[Ti])1/2
≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ sup
t1,...,tm

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

Ti − E[Ti]

(Var[T̃i])1/2
≤ ti ·

(

Var[Ti]

Var[T̃i]

)1/2
}]

−
m
∏

i=1

Φ

(

ti ·
(

Var[Ti]

Var[T̃i]

)1/2
)
∣

∣

∣

∣

∣

+ sup
t1,...,tm

∣

∣

∣

∣

∣

m
∏

i=1

Φ

(

ti ·
(

Var[Ti]

Var[T̃i]

)1/2
)

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

. (3.44)

Now from (3.23) and (3.24), there is a constant C ∈ (0,∞) such that for all λ ≥ 1 and all ti ∈ R

∣

∣

∣

∣

∣

ti ·
(

Var[Ti]

Var[T̃i]

)1/2

− ti

∣

∣

∣

∣

∣

= |ti|

∣

∣

∣

∣

∣

∣

(

1 +
Var[Ti]− Var[T̃i]

Var[T̃i]

)1/2

− 1

∣

∣

∣

∣

∣

∣

= |ti|
∣

∣

∣

(

1 +O(λ−3)
)1/2 − 1

∣

∣

∣
≤ C|ti|λ−3;

then since for all s ≤ t we have |Φ(s)− Φ(t)| ≤ (t− s)maxs≤u≤t ϕ(u), we get

sup
ti

∣

∣

∣

∣

∣

Φ

(

ti ·
(

Var[Ti]

Var[T̃i]

)1/2
)

− Φ(ti)

∣

∣

∣

∣

∣

≤ C sup
ti

(

|ti|λ−3 sup
u:|u−ti|≤tiCλ−3

ϕ(u)

)

≤ Cλ−3. (3.45)

Then, considering the second term on the right-hand side of (3.44), arguing as at (3.37) we have

sup
t1,...,tm

∣

∣

∣

∣

∣

m
∏

i=1

Φ

(

ti ·
(

Var[Ti]

Var[T̃i]

)1/2
)

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ sup
t1,...,tm

m
∑

i=1

∣

∣

∣

∣

∣

Φ

(

ti ·
(

Var[Ti]

Var[T̃i]

)1/2
)

− Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−3, (3.46)

by (3.45). Thus for any ε > 0, from (3.44) and (3.43) with (3.46),

sup
t1,...,tm

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{

Ti − E[Ti]

(Var[Ti])1/2
≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλ−1/(2d+ε) + Cλ−3 = O(λ−1/(2d+ε)).

This completes the proof of Theorem 2.1. �

4 Proof of Theorem 2.2

Recall from Section 2.2 that we here assume ξ(x,X ) is translation invariant and defined for
x ∈ X and finite X ⊂ R

d (i.e. for unmarked point sets), and that X denotes a random d-vector
with density κ. Let Hκ(X) be a point process in R

d whose distribution, given X, is that of a
homogeneous Poisson point process of intensity κ(X) (i.e., a certain Cox point process). We
will employ an ensemble version the pivoted coupling of (Pt : t > 0) and Hκ(X) as in [20] (see
also [16]), which will in particular enable us to approximate the nonhomogeneous Poisson point
process Pλ locally by a Poisson process which is homogeneous (given X).

On a suitable probability space (Ω,F ,P), let H+ denote a homogeneous Poisson process of
unit intensity in R

d× [0,∞) that is independent of X. For t ≥ 0, let P ′
t denote the image of the

restriction of H+ to the set {(x, s) ∈ R
d × [0,∞) : s ≤ tκ(x)} under the mapping (x, s) 7→ x.

For λ > 0, let H′
λ denote the image of the restriction of H+ to the set {(x, s) ∈ R

d × [0,∞) :
s ≤ λκ(X)} under the mapping (x, s) 7→ λ1/d(x−X).
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Lemma 4.1 Let λ > 0. For each t > 0 we have that P ′
t

D
= Pt, and for each λ > 0 the conditional

distribution of H′
λ, given X, is the same as that of Hκ(X).

Moreover, for all K > 0 the event Aλ(K) defined by

Aλ(K) := {λ1/d(−X + P ′
λ) ∩BK = H′

λ ∩ BK} (4.1)

satisfies P[Aλ(K)] → 1 as λ→ ∞.

Proof. The proof is based on that of Theorem 2.1 of [20] (see Section 3 of [20]). By the
Mapping Theorem [11], P ′

t has the distribution of Pt, and the conditional distribution of H′
λ,

given X, is the same as that of Hκ(X).
The final statement in the lemma follows as in the proof of Lemma 3.1 in [20] (our λ, P ′

λ,
and H′

λ are there called n, P(n), and Hn respectively). �

In proving Theorem 2.2, it is useful to use a radius of stabilization which is determined
entirely by the set of points within a fixed distance of the origin, having non-zero associated ∆
with positive probability. The next lemma enables us to do this.

Lemma 4.2 Suppose R is a radius of external stabilization for H1 satisfying (2.6). Then there
exist a constant K ∈ (0,∞), a nonnegative integer m, and a measurable subset E of (BK)

m

with strictly positive (dm)-dimensional Lebesgue measure, such that if (x1, . . . , xm) ∈ E, then the
point set {x1, . . . , xm} is K-externally stable with Hξ({0, x1, . . . , xm})−Hξ({x1, . . . , xm}) 6= 0.

Proof. By (2.6) and the continuity of measure, we can (and do) choose K < ∞ such that
P[R ≤ K,∆(H1;R) 6= 0] > 0, and then we can (and do) choose a nonnegative integer m such

that P[R ≤ K,∆(H1;R) 6= 0, card(H1 ∩ BK) = m] > 0. Let H(1)
1 be the restriction of H1 to

BK and let H(2)
1 to be the restriction of H1 to R

d \ BK . Then H(1)
1 and H(2)

1 are independent
Poisson point processes on complementary regions of Rd.

In general, the event {R ≤ K} might not be determined by the restriction of H1 to BK .
To get around this, observe that there exists a version of the conditional probability P[R ≤
K,∆(H1;R) 6= 0|H(1)

1 ] that is a (measurable) function of the configuration H(1)
1 alone; let

ψ(H(1)
1 ) denote such a version of this conditional probability. Let ωd be the volume of the

unit-radius ball in R
d. Then

0 < P[R ≤ K,∆(H1;R) 6= 0|card(H1 ∩ BK) = m]

= (Kdωd)
−m

∫

BK

dx1

∫

BK

dx2 · · ·
∫

BK

dxmψ({x1, . . . , xm}).

Hence, denoting by E the set of (x1, . . . , xm) ∈ (BK)
m such that ψ({x1, . . . , xm}) > 0, we see

that E must have strictly positive Lebesgue measure in R
dm.

For almost every configuration (x1, . . . , xm) ∈ E, there is a non-zero probability that {x1, . . . , xm}∪
H(2)

1 is K-externally stable, and hence there exists a configuration X of points outside BK such
that {x1, . . . , xm} ∪ X is K-externally stable with ∆ 6= 0; but in this case, by the definition of
K-external stability, {x1, . . . , xm} itself must be K-externally stable with ∆ 6= 0, and therefore
the set E (possibly amended by a set of measure zero) has the properties claimed. �

Throughout the rest of this section, we assume that there exists a radius of external sta-
bilization R for H1 satisfying (2.6). Choose K,m and E as in the preceding lemma, and fix
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these for the rest of this section. Below we shall write simply Aλ for Aλ(K). Let E ′ be the
set of m-point configurations {x1, . . . , xm} in BK such that (x1, . . . , xm) ∈ E, and for any point
process X in R

d define

RK(X ) :=

{

K if X ∩BK ∈ E ′

+∞ otherwise
. (4.2)

By the properties of E in Lemma 4.2, RK(X ) is a radius of external stabilization for X and
∆(X ;RK(X )) 6= 0 whenever RK(X ) < ∞ (i.e., when RK(X ) = K). Moreover, RK(X ) is
measurable with respect to the σ-algebra generated by X ∩ BK , and P[RK(H1) = K] > 0. We
shall be interested in RK(X ) for various choices of X including Hκ(X) and λ

1/d(−X + Pλ).

Recall that B̃(Γ) denotes the class of functions in B(Γ) that are almost everywhere conti-
nuous. As a further step towards proving Theorem 2.2, we give the following lemma.

Lemma 4.3 Suppose that f ∈ B̃(Γ), and that either (i) f is constant, or (ii) (2.8) holds. Then
as λ→ ∞ we have

(Hξ,f
λ (P ′

λ ∪ {X})−Hξ,f
λ (P ′

λ))1{RK(λ1/d(−X+P ′

λ))=K}
D−→ f(X)∆(Hκ(X);RK(Hκ(X))).

Proof. If RK(λ
1/d(−X + P ′

λ)) = K and Aλ occurs, then by (4.1), RK(H′
λ) = K and

Hξ,f
λ (P ′

λ ∪ {X})−Hξ,f
λ (P ′

λ)− f(X)∆(H′
λ;K)

=
∑

y∈P ′

λ∩Bλ−1/dK
(X)

(f(y)− f(X))(ξλ(y; (P ′
λ ∩ Bλ−1/dK(X)) ∪ {X})− ξλ(y;P ′

λ ∩ Bλ−1/dK(X)))

=
∑

y∈H′

λ∩BK

(f(X + λ−1/dy)− f(X))(ξ(y; (H′
λ ∩ BK) ∪ {0})− ξ(y;H′

λ ∩ BK)), (4.3)

using translation-invariance in the final equality. If f is constant then the last expression in
(4.3) is zero, and for this case the result follows from the two facts (given by Lemma 4.1) that
P[Aλ] → 1 as λ → ∞ and H′

λ has the same distribution, given X, as Hκ(X). So it remains to

consider the case where f ∈ B̃(Γ) and (2.8) holds. Put φε(x) := supy∈Bε(x){|f(y)−f(x)|}. Then
by (4.3) and the fact that H′

λ has the same distribution, given X, as Hκ(X), we have

E[(|Hξ,f
λ (P ′

λ ∪ {X})−Hξ,f
λ (P ′

λ)− f(X)∆(H′
λ;RK(H′

λ))|1Aλ∩{RK(H′

λ)=K})|X]

≤ E

[(

∑

y∈Hκ(X)∩BK

|f(X + λ−1/dy)− f(X)| · |ξ(y; (Hκ(X) ∩ BK) ∪ {0})− ξ(y;Hκ(X) ∩BK)|
)
∣

∣

∣
X
]

=

∫

BK

|f(X + λ−1/dy)− f(X)|E[(|ξ(y; (Hκ(X) ∩ BK) ∪ {0})− ξ(y;Hκ(X) ∩ BK)|)|X]κ(X)dy

≤ κ(X)φλ−1/dK(X)

∫

BK

E[(|ξ(y; (Hκ(X) ∩ BK) ∪ {0})− ξ(y;Hκ(X) ∩BK)|)|X]dy,

where for the equality we have used standard Palm theory (Theorem 1.6 of [12]). Since we
assume f ∈ B̃(Γ) and (2.8) holds, almost surely with respect to X the above expression is finite
and tends to zero as λ → ∞. Since by (4.1) RK(λ

1/d(−X + P ′
λ)) = RK(H′

λ) on Aλ and by
Lemma 4.1 P[Aλ] → 1, this shows that for any ε > 0,

P[|(Hξ,f
λ (P ′

λ ∪ {X})−Hξ,f
λ (P ′

λ))1{RK(λ1/d(−X+P ′

λ))=K} − f(X)∆(H′
λ;RK(H′

λ))1{RK(H′

λ)=K}| > ε]
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tends to 0 as λ→ ∞. Since (by Lemma 4.1) H′
λ has the same distribution, given X, as Hκ(X),

this demonstrates the result. �

Recall that X and H+, along with P ′
t, are defined on a common probability space (Ω,F ,P).

Let F0 be the trivial σ-algebra, and for t > 0 let Ft be the sub-σ-algebra of F generated
by {X} ∪ {(x, s) ∈ H+ : s ≤ tκ(x)}; that is, the smallest σ-algebra with respect to which
the random variable X is measurable and the number of points in H+ in F is measurable for
each Borel F ⊂ {(x, s) : s ≤ tκ(x)}. In particular, Pt in the pivoted coupling (i.e., P ′

t) is
Ft-measurable.

A key step in the proof of Theorem 2.2 is the following lemma which could also be given
in more general terms as a formula for the variance of a function of a Markov process of pure
jump type with bounded jump rates.

Lemma 4.4 Let λ > 1. Suppose that g is a measurable function defined on all finite subsets of
R

d with the property that

E[|g(P ′
λ ∪ {X})− g(P ′

λ)|p] <∞ (4.4)

for some p > 2. Then

Var[g(Pλ)] = E

∫ λ

0

(E[g(P ′
λ ∪ {X})− g(P ′

λ)|Ft])
2dt. (4.5)

We shall prove Lemma 4.4 by discrete-time approximation, but it it seems likely that it can
also be proved by an argument based on generators (S.C. Harris, personal communication). It
may be that with such a proof, the condition p > 2 can be relaxed to p = 2.

Before proving Lemma 4.4, we give a preliminary result.

Lemma 4.5 Let λ > 1. Suppose that g is a measurable function defined on all finite subsets of
R

d, and that (4.4) holds for some p > 2. Then for any q ∈ [2, p), we have that as h ↓ 0,

E[|g(P ′
λ)− g(P ′

λ−h)|q] = O(h). (4.6)

Proof. In this proof we write simply Pt for P ′
t. Let Yk denote the point process consisting of k

independent random κ-distributed points on R
d. Note first that setting αk := E[|g(Yk ∪{X})−

g(Yk)|p], we have for 0 < t ≤ λ that

E[|g(Pt ∪ {X})− g(Pt)|p] =
∞
∑

k=0

αke
−t t

k

k!
≤ eλ

∞
∑

k=0

αke
−λλ

k

k!

= eλE[|g(Pλ ∪ {X})− g(Pλ)|p] <∞, (4.7)

by (4.4), a fact that we shall use later.
For t > 0 let Nt denote the number of points of Pt (a Poisson variable with mean t). Setting

M := Nλ −Nλ−h, by conditioning on M and Nλ−h we can write, for q ≥ 2,

E[|g(Pλ)− g(Pλ−h)|q] =
∞
∑

j=1

∞
∑

k=0

E[|g(Yk+j)− g(Yk)|q]P[M = j]P[Nλ−h = k]. (4.8)
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It follows from Minkowski’s inequality that, for q ≥ 2,

E[|g(Yk+j)− g(Yk)|q] ≤ jq
j−1
∑

ℓ=0

E[|g(Yk+ℓ+1)− g(Yk+ℓ)|q]. (4.9)

Moreover, setting r = k + ℓ,

∞
∑

k=0

E[|g(Yk+ℓ+1)− g(Yk+ℓ)|q]P[Nλ−h = k] ≤
∞
∑

r=0

E[|g(Yr+1)− g(Yr)|q]P[Nλ−h = r](λ− h)−ℓrℓ,

using the fact that Nλ−h is Poisson with mean λ− h. Hence

∞
∑

k=0

E[|g(Yk+ℓ+1)− g(Yk+ℓ)|q]P[Nλ−h = k]

≤ E[|g(Pλ−h ∪ {X})− g(Pλ−h)|qN ℓ
λ−h](λ− h)−ℓ. (4.10)

Thus we obtain from (4.8) with (4.9) and (4.10) that

E[|g(Pλ)− g(Pλ−h)|q] ≤
∞
∑

j=1

jq
j−1
∑

ℓ=0

E[|g(Pλ−h ∪ {X})− g(Pλ−h)|qN ℓ
λ−h](λ− h)−ℓ

P[M = j]

≤
∞
∑

j=1

jqE

[

|g(Pλ−h ∪ {X})− g(Pλ−h)|q
j−1
∑

ℓ=0

N ℓ
λ−h

]

P[M = j],

taking h small enough such that λ − h > 1. Since Nλ−h takes nonnegative integer values, we
have |∑j−1

ℓ=0 N
ℓ
λ−h| ≤ j(N j

λ−h + 1). Also Pλ−h and Nλ−h are independent of M , so

E[|g(Pλ)− g(Pλ−h)|q] ≤ E[|g(Pλ−h ∪ {X})− g(Pλ−h)|qM q+1(NM
λ−h + 1)1{M≥1}].

Suppose that (4.4) holds for some p > q, and set r = p/q > 1. Then Hölder’s inequality implies
that

E[|g(Pλ)− g(Pλ−h)|q]
≤ E[|g(Pλ−h ∪ {X})− g(Pλ−h)|p1{M≥1}]

1/r
E[((NM

λ−h + 1)M q+1)r/(r−1)1{M≥1}]
1−(1/r). (4.11)

Since M is independent of Pλ−h, we have from (4.4) and (4.7) that

E[|g(Pλ−h ∪ {X})− g(Pλ−h)|p1{M≥1}] = O(P[M ≥ 1]) = O(h). (4.12)

Also,

E[(NM
λ−hM

q+1)r/(r−1)1{M≥1}] =
∞
∑

i=1

e−hh
i

i!
E[N

ir/(r−1)
λ−h ]i(q+1)r/(r−1),

which for λ − h > 1, using standard Poisson moment bounds, is bounded above by (setting
j = i− 1)

h
∞
∑

j=0

e−hh
j(λ− h)(j+1)r/(r−1)

(j + 1)!
j(q+1)r/(r−1).
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Now for fixed λ > 1 and r > 1, we can choose h small enough such that h(λ − h)r/(r−1) ≤ 1,
and hence

E[(NM
λ−hM

q+1)r/(r−1)1{M≥1}] ≤ O(h) ·
∞
∑

j=0

j(q+1)r/(r−1)

(j + 1)!
= O(h), (4.13)

as h ↓ 0. Then (4.11) with (4.12) and (4.13) gives the result. �

Proof of Lemma 4.4. Again we write Pt for P ′
t throughout this proof. For 0 ≤ s < t set

Ds,t := E[g(Pλ)|Ft]− E[g(Pλ)|Fs] = E[g(Pλ)− g(P̃λ,s,t)|Ft], (4.14)

where P̃λ,s,t is obtained by resampling that part of the Poisson process which arrives between
times s and t. More formally, letting P ′′

r be an independent copy of Pr, we can obtain P̃λ,s,t (for
0 ≤ s < t ≤ λ) by setting

P̃λ,s,t := Ps ∪ (Pλ \ Pt) ∪ P ′′
t−s.

Let n > 0 be an integer. Then g(Pλ)−E[g(Pλ)] =
∑n

i=1D(i−1)λ/n,iλ/n and by the orthogonality
of martingale differences,

Var[g(Pλ)] =
n
∑

i=1

E[D2
(i−1)λ/n,iλ/n]

Use the notation Nt := card(Pt), and similarly N ′′
t := card(P ′′

t ); then Nt, N
′′
t are Poisson

distributed with mean t. We write Ds,t =
∑2

i=0Ds,t,i, where for i = 0, 1 we set

Ds,t,i := E[(g(Pλ)− g(P̃λ,s,t))1{Nt−Ns=i}|Ft];

and Ds,t,2 := E[(g(Pλ)− g(P̃λ,s,t))1{Nt−Ns≥2}|Ft].

Suppose λ > 1 and h > 0 is small, so that λ− h > 1. By the conditional Hölder inequality, for
0 ≤ t ≤ t+ h ≤ λ we have that for p ∈ (1, 2]

E[D2
t,t+h,0] = E[(E[(g(Pλ)− g(P̃λ,t,t+h))1{Nt+h=Nt}1{N ′′

h>0}|Ft+h])
2]

≤ E[(E[|g(Pλ)− g(P̃λ,t,t+h)|p|Ft+h]
1/p

P[N ′′
h > 0](p−1)/p)2],

using the fact thatN ′′
h is independent of Ft+h. By the conditional Jensen inequality, for p ∈ (1, 2],

E[|g(Pλ)− g(P̃λ,t,t+h)|p|Ft+h]
2/p ≤ E[|g(Pλ)− g(P̃λ,t,t+h)|2|Ft+h],

and hence we obtain

E[D2
t,t+h,0] = O(h2(p−1)/p)E[|g(Pλ)− g(P̃λ,t,t+h)|2]

= O(h2(p−1)/p)E[|g(Pλ)− g(P̃λ,λ−h,λ)|2]. (4.15)

Note that

g(Pλ)− g(P̃λ,λ−h,λ) = (g(Pλ)− g(Pλ−h))− (g(P̃λ,λ−h,λ)− g(Pλ−h))

and that g(Pλ) − g(Pλ−h) and g(P̃λ,λ−h,λ) − g(Pλ−h) are identically distributed. Hence, by
Minkowski’s inequality, for q ≥ 1 we have

E[|g(Pλ)− g(P̃λ,λ−h,λ)|q] ≤ 2qE[|g(Pλ)− g(Pλ−h)|q]. (4.16)
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Suppose that (4.4) holds for some p > 2. By (4.15) with the q = 2 case of (4.6) and (4.16) we
obtain that as h ↓ 0

E[D2
t,t+h,0] = o(h). (4.17)

Next, choose r > 1 with 2r < p, with p as in (4.4). By the conditional Jensen inequality

E[D2
t,t+h,2] ≤ E[|g(Pλ)− g(P̃λ,t,t+h)|21{Nt+h−Nt≥2}]

≤ E[|g(Pλ)− g(P̃λ,t,t+h)|2r]1/rP[Nt+h −Nt ≥ 2](r−1)/r,

by Hölder’s inequality. Then by (4.16) and (4.6) for q = 2r > 2 we obtain

E[D2
t,t+h,2] = o(h). (4.18)

Finally, we deal with Dt,t+h,1. We have

E[D2
t,t+h,1] = E[(E[(g(Pλ)− g(P̃λ,t,t+h))1{Nt+h−Nt=1}|Ft+h])

2]

= E[(Dt,t+h,1,0 +Dt,t+h,1,1)
2],

where we set

Dt,t+h,1,0 := E[(g(Pλ)− g(P̃λ,t,t+h))1{Nt+h−Nt=1}1{N ′′

h=0}|Ft+h],

and Dt,t+h,1,1 := E[(g(Pλ)− g(P̃λ,t,t+h))1{Nt+h−Nt=1}1{N ′′

h≥1}|Ft+h].

We have

Dt,t+h,1,0 =

E[(g(Pt ∪ (Pλ \ Pt+h) ∪ {X})− g(Pt ∪ (Pλ \ Pt+h)))1{Nt+h−Nt=1}1{N ′′

h=0}|Ft+h]

= e−h
E[g(Pλ−h ∪ {X})− g(Pλ−h)1{Nt+h−Nt=1}|Ft+h],

since N ′′
h is Poisson with mean h and independent of Ft+h. Then using the fact that Nt+h, Nt

are Ft+h-measurable

Dt,t+h,1,0 = e−h1{Nt+h−Nt=1}E[g(Pt ∪ (Pλ \ Pt+h) ∪ {X})− g(Pt ∪ (Pλ \ Pt+h))|Ft+h]

= e−h1{Nt+h−Nt=1}E[g(Pt ∪ (Pλ \ Pt+h) ∪ {X})− g(Pt ∪ (Pλ \ Pt+h))|Ft],

recalling that X is Ft-measurable for all t > 0. Here 1{Nt+h−Nt=1} and E[g(Pλ−h ∪ {X}) −
g(Pλ−h)|Ft] are independent, so squaring and taking expectations we obtain

E[D2
t,t+h,1,0] =

e−2h
P[Nt+h −Nt = 1]E[(E[g(Pt ∪ (Pλ \ Pt+h) ∪ {X})− g(Pt ∪ (Pλ \ Pt+h))|Ft])

2]

= h(1 + o(1))E[(E[g(Pλ−h ∪ {X})− g(Pλ−h)|Ft])
2]. (4.19)

Also we have by Hölder’s inequality that for some p with 1 < p ≤ 2

E[D2
t,t+h,1,1] ≤ E[(E[|g(Pλ)− g(P̃λ,t,t+h)|1{N ′′

h>0}|Ft+h])
2]

≤ E[(E[|g(Pλ)− g(P̃λ,t,t+h)|p|Ft+h]
1/p

P[N ′′
h > 0](p−1)/p)2]

= O(h2(p−1)/p)E[|g(Pλ)− g(P̃λ,t,t+h)|2], (4.20)
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which is o(h) by (4.16) and (4.6).
Thus combining (4.17), (4.18), (4.19), and (4.20), and using Cauchy-Schwarz, we obtain

E[D2
t,t+h] = hE[(E[g(Pλ−h ∪ {X})− g(Pλ−h)|Ft])

2] + o(h),

as h ↓ 0. In particular, for λ > 1,

n
∑

i=1

E[D2
(i−1)λ/n,iλ/n] = λn−1

n
∑

i=1

E[(E[g(Pλ(1−n−1) ∪ {X})− g(Pλ(1−n−1))|F(i−1)λ/n])
2] + o(1),

as n → ∞. Given (4.4), the right-hand side of the last equation converges as n → ∞ to the
integral in (4.5). �

Proof of Theorem 2.2. For 0 ≤ t ≤ λ we write Et for conditional expectation given Ft and
set

Gλ,t := Hξ,f
λ (P ′

t ∪ {X})−Hξ,f
λ (P ′

t).

Recall that we are assuming (2.6), and that K and m, the set E ⊂ Bm
K , and the corresponding

set E ′ of point configurations, were fixed earlier (see (4.2)). We use the notation

Rλ,t := RK(λ
1/d(−X + P ′

t)).

Given the value of X, there is a non-zero probability that Hκ(X) lies in E
′. If this happens

then by definition (4.2) the value of ∆(Hκ(X);RK(Hκ(X))) is non-zero. Therefore, since there is a
non-zero probability that f(X) 6= 0, there is also a non-zero probability that
f(X)∆(Hκ(X);RK(Hκ(X))) 6= 0. Hence, we can we can (and do) choose δ > 0 such that

P[|f(X)∆(Hκ(X);RK(Hκ(X)))| > 3δ] > 4δ. (4.21)

By Lemma 4.3, for large enough λ we have

P[{|Gλ,λ| > 2δ} ∩ {Rλ,λ = K}] > 3δ.

Given ε > 0, let Ãλ,ε be the event that P ′
λ ∩Bλ−1/dK(X) = P ′

(1−ε)λ ∩Bλ−1/dK(X). Then we can
find ε1 > 0 such that for large λ,

P[{|Gλ,λ| > 2δ} ∩ {Rλ,λ = K} ∩ Ãλ,ε1 ] > 2δ.

If Rλ,λ = K and Ãλ,ε occurs, then for (1 − ε)λ ≤ t ≤ λ, we have both Rλ,t = Rλ,λ and
Gλ,t = Gλ,λ. Hence for large λ and (1− ε1)λ ≤ t ≤ λ,

P[{|Gλ,t| > 2δ} ∩ {Rλ,t = K}] > 2δ. (4.22)

Moreover, by the Cauchy-Schwarz inequality and (2.7), and an argument similar to (4.7), we
can find ε2 ∈ (0, ε1) such that for large enough λ and for (1− ε2)λ ≤ t ≤ λ we have

E[|Gλ,λ −Gλ,t|1{Rλ,t=K}] ≤ (E[|Gλ,λ −Gλ,t|2])1/2P[Ãc
λ,ε2

]1/2 ≤ δ2,

and therefore by the Jensen and Markov inequalities,

P[|Et[(Gλ,λ −Gλ,t)1{Rλ,t=K}]| > δ] ≤ P[Et[|Gλ,λ −Gλ,t|1{Rλ,t=K}] > δ]

≤ δ−1
E[|Gλ,λ −Gλ,t|1{Rλ,t=K}] < δ. (4.23)
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Since Gλ,t and Rλ,t are both Ft-measurable,

Et[Gλ,λ1{Rλ,t=K}] = Gλ,t1{Rλ,t=K} + Et[(Gλ,λ −Gλ,t)1{Rλ,t=K}]

and therefore we may deduce from (4.22) and (4.23) that for large enough λ and for (1− ε2)λ ≤
t ≤ λ we have

P[|Et[Gλ,λ1{Rλ,t=K}]| ≥ δ] ≥ δ,

and since Et[Gλ,λ1{Rλ,t=K}] = 1{Rλ,t=K}Et[Gλ,λ] almost surely, it follows that P[|Et[Gλ,λ]| ≥ δ] ≥
δ. Then by Lemma 4.4 with (2.7) we have for ε ∈ (0, ε2) that

Var[Hξ,f
λ (Pλ)] ≥

∫ λ

λ(1−ε)

E[(Et(Gλ,λ))
2]dt ≥ δ3ελ. �

5 Example: the k-nearest neighbour graph

The arguments indicated in Section 2.3 are spelled out for the particular case of the k-nearest
neighbour graph in Section 3.1 of [21]. Recall that for k ∈ N and a locally finite point set
X ⊂ R

d, the k-nearest neighbour (undirected) graph on X (denoted kNG(X )) is the graph with
vertex set X obtained by including {x, y} as an edge whenever y ∈ X is one of the k nearest
neighbours of x ∈ X , or vice versa (or both). For some applications of the k-nearest neighbour
graph and its relatives, see e.g. [24].

Let ξ(x;X ) be one half the sum of the lengths in kNG(X ) incident to x. Thus (for example)
we have that the total length of kNG(X ) is given by

∑

x∈X

ξ(x;X ).

Suppose Γ1, . . . ,Γn are disjoint convex or polyhedral regions. We give two examples of conditions
on {fi} and κ which, by known results together with Theorem 2.1, yield (2.3) for this case.

First, suppose that κ is bounded away from 0 on ∪iΓi. Then ξ is exponentially stabilizing
and has moments of all orders. If fi is continuous on Γi, then (2.5) holds with σ2

i > 0 (see [21],
Section 3.1). Hence Theorem 2.1 applies in this case. The conditions on fi and κ may be relaxed
(see [15]), but then extra work (such as making use of Theorem 2.2 in the present paper) is
needed to show that σ2

i > 0.
Alternatively, suppose that κ is equal to a positive constant κi on each Γi, so that Pλ is a

homogeneous Poisson point process with intensity λκi > 0 on Γi. Suppose that fi = 1Γi
, the

indicator of Γi, for each i. Then by the results of [18], we again have that (2.5) holds with
σ2
i > 0, and so Theorem 2.1 holds. In this case, Ti is the total length of kNG(Pλ ∩ Γi).
We conclude this section by presenting an explicit multivariate CLT of this type, derived

from Theorem 2.1, for the case of the nearest-neighbour (directed) graph in one dimension.
The nearest-neighbour (directed) graph on a locally finite point set X is the graph with vertex
set X obtained by including (x, y) as a (directed) edge from x ∈ X to y ∈ X when y is the
nearest neighbour of x (arbitrarily breaking any ties). The required moments, regularity and
stabilization conditions all follow from previous work (particularly [18]), and the fact that the
limiting variance is non-zero follows from an explicit calculation (which we give below) based
on the general results of [15, 16].

For a finite set X ⊂ (0, 1) and a Borel set Γ ⊆ (0, 1), let Lα(X ; Γ) denote the total weight of
the nearest-neighbour (directed) graph on X , with α-power weighted edges, counting only edges
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originating from points of X ∩ Γ. That is, if d(x;X ) := d2(x;X \ {x}) denotes the (Euclidean)
distance from x to its nearest neighbour in X , take

ξ(x;X ) = (d(x;X ))α, (5.1)

for some fixed parameter α ∈ (0,∞). Then

Lα(X ; Γ) =
∑

x∈X∩Γ

ξ(x;X ).

For m ∈ N, let Γ1, . . . ,Γm be disjoint, finite, non-null interval subsets of R. In particular,
let πi = |Γi| ∈ (0,∞) be the length of the interval Γi. Take fi = 1Γi

. Let the underlying density
κ be piecewise Borel-measurable, bounded away from 0 and from ∞, on each interval Γi; in
particular, for each i set κ(x) = κi(x) for x ∈ Γi, where κi ∈ B(Γi) and κi(x) > 0 for all x ∈ Γi.
Consider the unmarked case (so M = {1}). Then for λ > 0, Pλ is a Poisson point process with
intensity κi(x)λ on each Γi. Using the notation of Theorem 2.1, in this set-up we have that

Ti = 〈1Γi
, µξ

λ〉 =
∑

x∈Pλ∩Γi

ξλ(x;Pλ) =
∑

x∈Pλ∩Γi

ξ(λx;λPλ),

the final equality by translation-invariance. By the scaling properties (‘homogeneity’) of ξ as
given by (5.1), we have

Ti =
∑

x∈Pλ∩Γi

ξ(λx;λPλ) = λα
∑

x∈Pλ∩Γi

ξ(x;Pλ) = λαLα(Pλ; Γi).

All relevant stabilization, regularity and moments conditions are satisfied. Let H1 denote a
homogeneous Poisson point process of unit intensity on (0, 1), and let Un denote a binomial
point process consisting of n independent uniform random points on (0, 1). Then by Theorems
2.1 and 2.3 of [15], for α > 0

lim
λ→∞

λ−1Var[Ti] = lim
λ→∞

λ2α−1Var[Lα(Pλ; Γi)]

= Vα

∫

Γi

κi(x)dx+

(

δα

∫

Γi

κi(x)dx

)2

, (5.2)

where

Vα := lim
n→∞

n2α−1Var[Lα(Un; (0, 1))], (5.3)

and

δα := E[d(0;H1)
α] +

∫

R

E[d(0;H1 ∪ {y})α − d(0;H1)
α]dy. (5.4)

Let Γ(·) denote the (Euler) Gamma function, and let 2F1(·, ·; ·; ·) denote the (Gauss) hyper-
geometric function (see e.g. [1], Chapter 15). By (5.3) and equations (20) and (22) in [17], we
have that for α > 0

Vα = (4−α + 2 · 3−1−2α)Γ(1 + 2α)− 4−α(3 + α2)Γ(1 + α)2

+8 · 6
−α−1Γ(2 + 2α)

(1 + α)
2F1(−α, 1 + α; 2 + α; 1/3). (5.5)
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We now compute δα. By standard properties of the Poisson process, D := d(0;H1) is distributed
as an exponential random variable with parameter 2. So we have that for α > 0

E[Dα] =

∫ ∞

0

2rα exp(−2r)dr = 2−αΓ(1 + α),

(using Euler’s Gamma integral; see e.g. 6.1.1 in [1]). By Fubini’s theorem and (5.4) we have

δα = E

[

Dα − 2

∫ D

0

(Dα − tα)dt

]

= E[Dα + ((2/(1 + α))− 2)D1+α]

= 2−αΓ(1 + α)− 2α

1 + α
2−1−αΓ(2 + α) = 2−αΓ(1 + α)(1− α), (5.6)

using the functional relation Γ(x) = x−1Γ(1 + x) (see e.g. 6.1.15 in [1]) for the final equality.
Of note is the fact that δ1 = 0, so that in the α = 1 case the constant in the limiting (scaled)
variance is the same in the Poisson and binomial cases. For α 6= 1, δ2α > 0 and the variance in
the Poisson case is greater than that in the binomial case, as one expects (the Poisson process
introduces additional randomness).

Also by Theorem 2.1 of [14] (see also [16]) and equation (21) in [17], we have that for α > 0

λα−1
E[Lα(Pλ; Γi)] → 2−αΓ(1 + α)

∫

Γi

κi(x)dx,

as λ→ ∞. Thus we have the following application of Theorem 2.1.

Theorem 5.1 For m ∈ N, let Γ1, . . . ,Γm be disjoint intervals in R with |Γi| = πi ∈ (0,∞). Let
κ(x) =

∑m
i=1 κi(x)1Γi

(x) where, for each i, κi ∈ B(Γi) and κi(x) > 0 for all x ∈ Γi. Suppose
α ∈ (0,∞).

(i) For 1 ≤ i ≤ m,

lim
λ→∞

λα−1
E[Lα(Pλ; Γi)] = 2−αΓ(1 + α)

∫

Γi

κi(x)dx.

(ii) For 1 ≤ i ≤ m,

lim
λ→∞

λ2α−1Var[Lα(Pλ; Γi)] = Vα

∫

Γi

κi(x)dx+

(

δα

∫

Γi

κi(x)dx

)2

=: σ2
i ,

where Vα and δα are given by (5.5) and (5.6) respectively.

(iii) Given ε > 0, there exists C ∈ (0,∞) such that for all λ ≥ 1,

sup
t1,...,tm∈R

∣

∣

∣

∣

∣

P

[

m
⋂

i=1

{Lα(Pλ; Γi)− E[Lα(Pλ; Γi)]

(Var[Lα(Pλ; Γi)])1/2
≤ ti

}

]

−
m
∏

i=1

Φ(ti)

∣

∣

∣

∣

∣

≤ Cλε−(1/2).

Part (iii) of Theorem 5.1 is our multivariate CLT. In the particular case of piecewise constant
κ, that is κi(x) = κi ∈ (0,∞) for all x ∈ Γi, we have that

∫

Γi

κi(x)dx = κi|Γi| = κiπi,

and so, for example, σ2
i = Vακiπi+ δ

2
ακ

2
iπ

2
i . Table 1 gives some values of the constants Vα, given

by (5.5), and δ2α, given by (5.6).
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α 1/2 1 2 3 4

Vα
1
2
+
√
2 arcsin(1/

√
3)− 13π

32
≈ 0.094148 1

6
85
108

149
18

135793
972

δ2α
π
32

0 1
4

9
4

81
4

Table 1: Some values of Vα and δ2α.
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