Stability for a class of equilibrium solutions to the coagulation-fragmentation equation

Lamb, Wilson and Stewart, Iain W. (2008) Stability for a class of equilibrium solutions to the coagulation-fragmentation equation. In: Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, 1048 (1). American Institute of Physics, pp. 942-945. ISBN 9780735405769

[img]
Preview
Text (strathprints013379)
strathprints013379.pdf
Accepted Author Manuscript

Download (55kB)| Preview

    Abstract

    We consider the behaviour of solutions to the continuous constant-rate coagulation-fragmentation equation in the vicinity of an equilibrium solution. Semigroup methods are used to show that the governing linear equation for a perturbation epsilon(x,t) has a unique globally defined solution for suitable initial conditions. In addition, Laplace transforms and the method of characteristics lead to an explicit formula for epsilon. The long-term behavior of epsilon is also discussed.