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Abstract

An equation describing the dynamical behaviour of phytoplankton cells is considered in which

the effects of cell division and aggregration are incorporated by coupling the coagulation-

fragmentation equation with the McKendrick-von Foerster renewal model of an age-structured

population. Under appropriate conditions on the model parameters, the associated initial-

boundary value problem is shown to be well posed in a physically relevant Banach space.
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1 Introduction

Phytoplankton is a vital ingredient in the majority of freshwater and oceanic food chains as it is

the only food available for many species of fish in their larval stage. An important observation

is that phytoplankton cells tend to form aggregates; that is, groups of cells living together. Since

larvae do not move on their own, they survive only if they are in the vicinity of the aggregates.
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Hence, being able to determine the spatial distribution of the aggregates is of importance in the

study of fish recruitment.

The distribution of aggregates can be studied at different levels. Individual-based models, which

can be thought of as providing ‘microscopic’ models, track the random motion and division of

individual particles; see [7, 27]. A ‘macroscopic’ description is provided by advection-diffusion-

reaction equations describing the concentrations (densities) of individual particles; see [21]. The

model which we study in this paper can be considered as lying somewhere in between, on a ‘meso-

scopic’ scale, in that it recognizes the role played by the phytoplankton aggregates which are now

individual building blocks labelled by their size. Thus, we describe the phytoplankton using the

aggregate density function u(x, t) which gives the number density of aggregates of size x; that is,

‘consisting’ of ‘x’ individual building blocks (note that here x is a continuous variable) at time

t. Such a model, fitting into the broad coagulation-fragmentation theory, can be obtained as a

limiting case of individual-based models [27] or derived from first principles, as in [18, 8, 1].

Our starting point is the model considered by A.S. Ackleh and B.G. Fitzpatrick in [1]. To introduce

this model we begin by noting that, though effects of aggregation on the dynamics of algal commu-

nities had been studied prior to [1], incorporating cell division in the aggregates had presented many

difficulties. Thus modelling efforts tended to focus on some special mechanisms for cell division;

for example, in [18] the author assumes that either the cells in the aggregate are dead (and thus

do not divide), or all daughter cells remain in the aggregate after division of the mother cell. In

[1], drawing on some earlier work, the authors assume that all daughter cells fall off the aggregates

and, joining the single cell population, enter the system as new aggregates, leaving the size of the

original aggregate unchanged by cell division. The resulting problem, analyzed in papers [1, 4],

can be regarded as a combination of the classical coagulation equation with the McKendrick-von

Foerster renewal model of an age-structured population :

∂tu(x, t) = −∂x(r(x)u(x, t)) − µ(x)u(x, t)

−u(x, t)

x1−x
∫

x0

k(x, y)u(y, t)dy +
1

2

x−x0
∫

x0

k(x − y, y)u(x − y, t)u(y, t)dy,

r(x0)u(x0, t) =

x1
∫

x0

β(y)u(y, t)dy, u(x, 0) = u0(x). (1.1)

Here 0 ≤ x0 < x1 ≤ ∞ are the minimum and, respectively, maximum size of particles. We note

that though only the case 0 < x0 < x1 < ∞ seems to make a biological sense, it is difficult to

put precise bounds for the size of the aggregates and hence it is customary to consider systems
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with aggregates of arbitrary size. Also, phase transitions observed in fragmentation-coagulation

systems, such as shattering and gelation, require the setting with x0 = 0 and x1 = ∞. We also note

that when x1 < +∞, then most of Section 2.1 becomes superfluous. The growth part, however, is

more interesting in this case, see the discussion of the boundary condition at x1.

We note, however, that here we have a size-structured population and the interpretation of the

coefficients r and β differs from that in the age-structured models. In (1.1) the function β represents

the rate at which daughter cells enter the single cell population and the function r represents the

rate of increase of a size x aggregate due to daughter cells remaining in the aggregate. In other

words, the model describes divisions of cells which happen simultaneously with the splitting of an

aggregate into an aggregate of the same size as the original one, and a single cell, which then enters

the system as a new aggregate. The coefficient µ represents the removal term which can include

various mechanisms such as death of cells or sinking of aggregates.

Next, the integral terms describe the standard coagulation process with the ‘stickiness function’

k(x, y) representing the rate at which an aggregate of size x sticks to an aggregate of size y. The

precise form of k can be found in [1]; we note in particular that it is a bounded function and this

is the only assumption required in our analysis. We note that if 0 < x0 < x1 < ∞, the coalescence

of aggregrates can occur only if x1 > 2x0. In this case, in (1.1) (and in (1.3) below), the two

coagulation terms should strictly be interpreted as

χ
U
(x)

2

∫ x−x0

x0

k(x − y, y)u(x − y, t)u(y, t) dy − u(x, t)χ
V
(x)

∫ x1−x

x0

k(x, y)u(y, t) dy , (1.2)

where χ
U

and χ
V

are the characteristic functions of the intervals U and V given by

U =







[2x0, x1] when x1 < ∞,

[2x0,∞) when x1 = ∞
; V =







[x0, x1 − x0] when x1 < ∞,

[x0,∞) when x1 = ∞.

The main role in the process of coagulation of phytoplankton is played by TEP (Transport Ex-

opolymer Particles). TEP are a by-product of the growth of phytoplankton and their stickiness

make the cells remain together upon contact. On the other hand, low levels of concentration of

TEP make the aggregates susceptible to being split by external forces, such as currents or turbu-

lence, [8, 14, 18, 23]. Fragmentation terms also appear in a natural way in individual based models

of phytoplankton, [27, 28]. Thus, here we consider the full fragmentation-coagulation equation
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coupled with the McKendrick-von Foerster renewal model:

∂tu(x, t) = −∂x(r(x)u(x, t)) − µ(x)u(x, t) − a(x)u(x, t) +

x1
∫

x

a(y)b(x|y)u(y, t)dy

−u(x, t)

x1−x
∫

x0

k(x, y)u(y, t)dy +
1

2

x−x0
∫

x0

k(x − y, y)u(x − y, t)u(y, t)dy, (1.3)

with the initial and boundary conditions of (1.1). As in classical fragmentation models, the coeffi-

cient a describes the rate of fragmentation; that is, the number of splitting events per unit time.

The function b(x|y) gives the distribution of x-sized daughter aggregates originating from a parent

of size y. We assume that the number of daughter particles is bounded

sup
x0≤y<x1

n(y) = M < ∞ where n(y) = sup
x0≤y<x1

y
∫

x0

b(x|y)dx, (1.4)

and also that
y

∫

x0

xb(x|y)dx = y, y < x1, (1.5)

the latter condition expressing the fact that the mass of all daughter particles resulting from the

splitting of a mass y parent must add up to y.

In [1] the mathematical analysis of (1.1) is carried out in a space, namely L2([x0, x1]), which has

no direct biological interpretation in this context. Furthermore, the proof of non-negativity of the

solution, and thus of global-in-time existence, is unclear. The full equation (1.3) with the renewal

boundary conditions (1.1) in L1([x0, x1]) is considered in [2], however the author focuses on bounded

coefficients on a finite interval and binary fragmentation; the existence is proved locally in time.

The results of [1] were extended in [4] to cover time-dependent coefficients r and µ with x0 = 0 and

x1 = ∞. However, the global-in-time existence results depend upon the existence of appropriate

upper and lower solutions which are constructed so that a large class of admissible initial conditions

is covered. We note a number of other generalizations of the model to include nonlinear effects

such as light shading in the column of water, [3], and interactions between species, [5, 6], which at

this moment are beyond the range of applicability of the theory presented here.

The papers [8, 27] are concerned with a problem of the form (1.3) (even with diffusion in space)

but with the growth coefficient r not requiring any boundary condition at x = x0 = 0; also the

coagulation term has a different form which makes the the global existence result less involved.

The authors work in the physically relevant L1 space (where the norm gives the total number of
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aggregates in the ensemble) but, as their main interest is the limit passage from the individual-based

model to the mesoscopic one, the mathematical analysis of the latter lacks some rigour.

The work presented in this paper is carried out in the space L1([x0, x1), (1+x)dx) = L1([x0, x1), dx)∩

L1([x0, x1), xdx), 0 ≤ x0 < x1 ≤ ∞, which keeps track of both the number of aggregates and of

the total number of cells in the the ensemble. We note that recently there has been an interest in

studying fragmentation and, in general, population type equations in another weighted L1 space

where the weight is given by the first eigenfunction of the adjoint problem, possibly up to a suit-

able normalization, see [24, 26] and [25, Chapter 3]. This space is very well suited to studying such

problems yielding easy existence and long time behaviour results, either through entropy estimates

or the theory of partially integral Markov semigroups. The study of (1.3) in this context is a

subject of current research. However, since most applied papers on fragmentation and coagulation

models are concerned with an analysis of them in either L1([x0, x1), dx) or L1([x0, x1), xdx), where

the norm is a measurable characteristic of the system, our results also are presented in the more

traditional setting.

This choice, moreover, has an additional advantage in that the fragmentation operator is known

to behave well in the space L1([x0, x1), xdx) whereas the transport term has nice properties in

L1([x0, x1), dx). Consequently, the intersection L1([x0, x1), (1+x)dx) provides a convenient frame-

work for a comprehensive analysis of the linear part of the problem (1.3) by means of the theory

of substochastic semigroups, [9], yielding satisfactory results even for unbounded coefficients.

The bilinear structure of the coagulation terms makes it straightforward to establish Lipschitz con-

tinuity and Fréchet differentiability properties if we work again in the space L1([x0, x1), (1+x)dx).

Thus, when (1.3) is expressed as an abstract Cauchy problem, standard results on semigroup theory

lead immediately to the existence and uniqueness of a strongly differentiable, local (in time) solution

u : [0,∞) → L1([x0, x1), (1 + x)dx). The advantage of the solution being strongly differentiable is

that no further justification has to be provided for pushing a time-derivative through the L1 norm;

see the proof of Theorem 1.1. Moreover, the semigroup approach that we adopt enables us to

borrow a simple but elegant trick from kinetic theory (see [13, Chapter 8]) to prove the positivity,

and, subsequently, global existence, of solutions, extending earlier results of [10, 22]. As far as we

are aware this technique has not previously been exploited in studies of coagulation-fragmentation

processes. It should be noted that other strategies, based on weak compactness arguments, can

be used to establish the existence of solutions to coagulation-fragmentation equations. In the case

of continuous models, the first results obtained in this manner were presented by Stewart in [29],
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and later developments can be found, for example, in [20]. Although these compactness-based

approaches can deal with certain unbounded coagulation kernels, they do not lead to strongly

differentiable solutions. Uniqueness results also have to be established separately; see [30].

General notation. We introduce the following notation for the spaces: for k = 0, 1

Xk = L1([x0, x1), x
kdx) and X = X0 ∩ X1 = L1([x0, x1), (1 + x)dx) .

Accordingly, we denote by ‖ · ‖k and ‖ · ‖ the natural norms in, respectively, Xk and X. Further,

we introduce the dual X∞ to X consisting of measurable functions f for which

‖f‖∞ = ess sup
x0≤x<x1

|f(x)|

1 + x
< ∞.

With this identification, the duality pairing is the integral

< f, g >=

x1
∫

x0

f(x)g(x)dx.

The space X is different from X0 only if x1 = ∞. In the particular case x0 = 0 and x1 = ∞, if

0 ≤ f(x) ≤ f1x + f2 for almost all x ∈ R+, then

‖f‖∞ ≤ sup
0≤x<∞

f1x + f2

x + 1
≤ max{f1, f2}.

Conversely, if f ∈ X∞, then clearly it is bounded (a.e.) by an affine function.

The main result of the paper is the existence of global strict solutions to (1.3).

Theorem 1.1 Let the coefficients a, µ, b, β, r and k satisfy the following constraints:

(i) a is measurable, supp a ⊂ [x0, x1) and there exist non-negative constants Pa and Qa such that

0 ≤ a(x) < Pax + Qa a.e.;

(ii) µ ∈ L∞ ([x0, x1)) and µ(x) + a(x) ≥ 0 a.e.;

(iii) b satisfies (1.4) and (1.5);

(iv) β is non-negative and β(x)/(1 + x) is essentially bounded on [x0, x1);

(v) r is a positive, absolutely continuous function on [x0, x1), with 1/r integrable on [x0, x0 + δ]

(for suitably small δ) and r(x)/(1 + x) essentially bounded on [x0, x1);

(vi) k ∈ L∞ ([x0, x1) × [x0, x1)) is non-negative and symmetric.
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Then the abstract Cauchy problem (1.3) has a unique, global, non-negative strict solution u for each

0 ≤ u0 ∈ D(K), where K is the generator of the linear fragmentation semigroup.

The proof of this theorem, given in Section 3, is based on a detailed analysis of the linear part of

the problem and, in particular, a precise characterization of the generator K, which is the subject

of Section 2. We emphasize that this characterization is crucial in obtaining a priori estimates in

Lemmas 3.3 and 3.4 which are required in the proof of the global (in time) existence of solutions

to (1.3).

2 The Linear Part

In this section we provide a comprehensive theory of the linear part of the problem including

fragmentation with growth (that is r(x) > 0 for x0 < x < x1):

∂tu(x, t) = −∂x(r(x)u(x, t)) − µ(x)u(x, t) − a(x)u(x, t) +

x1
∫

x

a(y)b(x|y)u(y, t)dy

r(x0)u(x0, t) =

x1
∫

x0

β(y)u(y, t)dy, u(x, 0) = u0(x) . (2.1)

The first step is to deal with the transport part and we shall find it convenient to consider:

∂tu(x, t) = −∂x(r(x)u(x, t)) − q(x)u(x, t), (2.2)

with the same boundary and initial conditions, where q(x) = µ(x)+a(x) ≥ 0. We note that though

the theory of first-order equations has been well developed in e.g. [11, 12, 17], the assumptions

of op. cit. are not particularly well-suited for coefficients having singularities, which may appear

in our model. Since we require a detailed control of the estimates, it proves more convenient to

perform directly on (2.1) rather than try to adapt the general theory to cover our particular case.

As indicated in Theorem 1.1, we assume that µ and a are measurable functions with µ essentially

bounded and a satisfying

0 ≤ a(x) ≤ Pax + Qa and 0 ≤ q(x) ≤ Px + Q, a.e. (2.3)

We further assume that supp a ⊂ [x0, x1) so that no splitting of particles larger than x1 (should

they exist) can influence the dynamics on (x0, x1).

It is well-known, [15, Lemma VI.4.2], that the solution of this problem can be obtained via the

solutions of the corresponding problem with a homogeneous boundary condition. We shall recover

this result in the process as we work in a slightly different setting.
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Before we proceed to examine the well-posedness of the initial/boundary value problem (2.2), we

first discuss in detail the assumptions and the meaning of the boundary condition so that the proper

definition of the domain can be stated. The positive growth rate r is assumed to be absolutely

continuous on (x0, x1), denoted by r ∈ AC((x0, x1)); (absolute continuity on an open set means

that r is absolutely continuous in the standard sense on each compact subinterval). To ensure

global existence of characteristics if x1 = ∞, we also assume that r ∈ X∞((x0, x1)). In addition,

by imposing the restriction that
∫

x+

0

ds

r(s)
< +∞ (2.4)

(where henceforth the symbols
∫

α+

and
∫

β−

will indicate integrals in some right (respectively left)

neighbourhood of α (respectively β)) we can define

R(x) =

x
∫

x0

ds

r(s)
,

and it follows automatically that

lim
x→x0

R(x) = 0. (2.5)

We point out that assumption (2.4) allows for r(x) becoming zero at x0; for example, we may have

x0 = 0 and r(x) = x2/3.

Let us consider the boundary condition at x = x0. The simplest clearly is the homogeneous

condition which, due to the form of the growth term, should be written as

r(x)u(x, t)|x=x0
:= lim

x→x0

r(x)u(x, t) = 0, t > 0. (2.6)

Clearly, if r is continuous at x0 with non-zero limit, this is the same as saying that u(x0, t) = 0,

but (2.6) can also allow r to be infinite at x0. However, (2.6) has to be modified for a process that

includes fragmentation events in which large particles split creating an array of smaller particles

since some of these smaller particles may have size x0. Such x0-sized particles are created by

fragmentation at the rate
∫ x1

x0
a(y)b(x0|y)u(y, t)dy and enter the population x0 > 0 at the rate

r(x)u(x, t)|x=x0
. Thus we should have

r(x)u(x, t)|x=x0
=

x1
∫

x0

a(y)b(x0|y)u(y, t)dy.

In general, we consider the following boundary condition which covers all these cases

lim
x→x+

0

r(x)u(x, t) =

x1
∫

x0

β(y)u(y, t)dy, (2.7)
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where 0 ≤ β ∈ X∞. One other feature of the problem that has to be considered is the behaviour

of r at x1 if the latter is finite. There are two ways of looking at the system. One is that we are

looking only at the ‘window’ (x0, x1) and ignore what happens beyond the maximal size x1. In

this case particles can grow bigger than x1 but will then move outside the scope of our model.

This does not require any assumption on r(x1) but we have to impose a cut-off condition on the

fragmentation rate for sizes bigger than x1 so that they do not influence particles in the interval

(x0, x1). Consequently the system of particles of size x ∈ (x0, x1) will not be closed but the evolution

of the system will be governed only by what happens in (x0, x1).

The second way of modelling the system is to prevent the particles from growing beyond x1. If we

formally integrate the equation (2.2) with respect to the measure (1 + x)dx we obtain

d

dt

x1
∫

x0

u(x, t)(1 + x)dx = r(x0)u(x0, t)(1 + x0) − r(x1)u(x1, t)(1 + x1)

+

x1
∫

x0

r(x)u(x, t)dx −

x1
∫

x0

q(x)u(x, t)(1 + x)dx (2.8)

and it is clear that to prevent any escape through x1 it is enough to assume that r(x1)u(x1) = 0.

We note that it is possible to introduce other mechanisms to prevent aggregates growing beyond a

certain limit, such as breakage, see [16, 31].

Let us denote by T the formal differential expression

(T u)(x) = −(r(x)u(x))x − q(x)u(x) (2.9)

and by Tmax the realization of this expression on the maximal domain

D(Tmax) := {u ∈ X : qu ∈ X, ru ∈ AC((x0, x1)), (ru)x ∈ X}.

Our main interest is Tmax restricted to a domain ensuring that appropriate boundary conditions

are satisfied. Thus, we define Tβ as Tmax restricted to

D(Tβ) = {u ∈ D(Tmax) : lim
x→x+

0

r(x)u(x) =

x1
∫

x0

β(y)u(y)dy}

which takes care of both the homogeneous (β = 0) and the ‘renewal’ boundary condition for either

the unbounded domain (x1 = ∞) or with x1 < ∞ but without imposing any restriction on the

behaviour of the system at x1. We note that accordingly T0 will denote the realization of Tmax

with zero boundary condition (at x = x0).
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If we want to prevent growth beyond x1 then we further restrict Tβ to Tβ,1 defined on

D(Tβ,1) = {u ∈ D(Tβ) : lim
x→x−

1

r(x)u(x) = 0}.

When it does not lead to any misunderstanding, to simplify notation, we shall denote by (T,D(T ))

the operator Tmax restricted to any domain with the boundary conditions discussed above.

The general ‘formal’ solution of the resolvent equation

λu(x) + ∂x(r(x)u(x)) + q(x)u(x) = f(x) (2.10)

is given by

u(x) =
e−λR(x)−Q(x)

r(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy + C
e−λR(x)−Q(x)

r(x)
, (2.11)

where Q(x) =
∫ x
x0

q(s)/r(s) ds is well defined due to (2.4).

There are some identities and estimates which appear throughout the paper. We collect them in

the following lemma.

Lemma 2.1 Let λ > ‖r‖∞. Then

(a) For any x0 ≤ x < x′′ < x1

I(x, x′′) :=

x′′

∫

x

e−λR(s)

r(s)
(1 + s)ds ≤

1

λ − ‖r‖∞
e−λR(x)(1 + x) ; (2.12)

(b) if x1 = ∞, then
∞

∫

x0

e−λR(s)−Q(s)ds ≤

∞
∫

x0

e−λR(s)ds < ∞ ; (2.13)

(c) for x0 ≤ x < x′′ < x1,

J(x, x′′) :=

x′′

∫

x

(λ + q(s))e−λR(s)−Q(s)

r(s)
(1 + s)ds

= e−λR(x)−Q(x)(1 + x) − e−λR(x′′)−Q(x′′)(1 + x′′) +

x′′

∫

x

e−λR(s)−Q(s)ds. (2.14)

In particular, if x1 = ∞, then J(x0,∞) < +∞.
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Proof. Consider first the case x1 < +∞. Then, on integrating by parts, we obtain

I(x, x′′) = −
1

λ
e−λR(x′′)(1 + x′′) +

1

λ
e−λR(x)(1 + x) +

1

λ

x′′

∫

x

e−λR(s)ds

≤
1

λ
e−λR(x)(1 + x) +

‖r‖∞
λ

x′′

∫

x

e−λR(s)

r(s)
(1 + s)ds =

1

λ
e−λR(x)(1 + x) +

‖r‖∞
λ

I(x, x′′)

which in turn gives

I(x, x′′) ≤
1

λ − ‖r‖∞
e−λR(x)(1 + x), (2.15)

yielding part (a). For (b), since the right-hand side of (2.15) does not depend on x′′, and x1 = ∞,

we can let x′′ → ∞ to deduce that I(x,∞) < ∞. Hence

∞
∫

x0

e−λR(s)ds ≤ ‖r‖∞

∞
∫

x0

e−λR(s)

r(s)
(1 + s)ds < ∞. (2.16)

Since the first inequality in (2.13) is obvious, part (b) is proved.

To prove (c), first we note that

λ + q(x)

r(x)
e−λR(x)−Q(x) = −

d

dx
e−λR(x)−Q(x). (2.17)

Hence, integrating by parts with respect to (1 + x)dx, we obtain

J(x, x′′) = e−λR(x)−Q(x)(1 + x) − e−λR(x′′)−Q(x′′)(1 + x′′) +

x′′

∫

x

e−λR(s)−Q(s)ds

and J(x0,∞) ≤ (1 + x0) + I(x0,∞) < +∞, since R(x0) = Q(x0) = 0. 2

The solution to the problem λu−T0u = f , that is, to (2.10) with homogeneous boundary conditions,

is given by (2.11) with C = 0:

uλ(x) =
e−λR(x)−Q(x)

r(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy . (2.18)

In fact, standard estimates give the following lemma.

Lemma 2.2 Under the adopted assumptions, if λ > ‖r‖∞, then R(λ, T0)f = uλ defines the resol-

vent of (T0, D(T0)) and satisfies the estimate

‖R(λ, T0)‖ ≤
1

λ − ‖r‖∞
. (2.19)

The following lemma establishes that the resolvent of T0,1 is also defined by (2.18).
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Lemma 2.3 Let x1 < ∞ and assume that

∫

x−

1

ds

r(s)
= ∞. (2.20)

Then uλ ∈ D(T0,1).

Proof. The only thing to check is that

0 = lim
x→x−

1

r(x)uλ(x) = lim
x→x−

1

e−λR(x)−Q(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy.

Due to the assumption, limx→x−

1

R(x) = +∞ and, since Q is positive, the first factor tends to 0

whereas the second may diverge to ∞. Let f ∈ C∞
0 ((x0, x1)). Then limx→x−

1

∫ x
x0

eλR(y)+Q(y)f(y)dy

is finite and thus

lim
x→x−

1

e−λR(x)−Q(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy = 0.

Consider next an arbitrary sequence (an)n∈N ⊂ (x0, x1) converging to x1 and define a sequence of

linear functionals on X by

An(f) = e−λR(an)−Q(an)

an
∫

x0

f(y)eλR(y)+Q(y)dy.

By monotonicity of eλR(y)+Q(y) we have |An(f)| ≤ ‖f‖ so the family (An)n∈N is bounded uniformly

in n. Since C∞
0 ((x0, x1)) is dense in X = L1([x0, x1], (1 + x)dx), by a corollary to the Banach-

Steinhaus theorem (see [9, Proposition 2.13]) we find that limn→∞ An(f) = 0. 2

Remark 2.1 We note that the assumption (2.20) is crucial for the correctness of the model if

particles of sizes exceeding x1 are not allowed. Indeed, if
∫

x−

1

r(s)−1 ds < ∞, then

lim
x→x−

1

r(x)uλ(x) = e−λR(x1)−Q(x1)

x1
∫

x0

eλR(y)+Q(y)f(y)dy 6= 0,

and, in general, there will be an out-flux through x1 creating particles of sizes larger than x1.

Next we turn our attention to the problem with β 6= 0.

Lemma 2.4 Let λ > ‖r‖∞+‖β‖∞(1+x0). Then the resolvent R(λ, Tβ) of the operator (Tβ, D(Tβ))

exists and satisfies the estimate

‖R(λ, Tβ)‖ ≤
1

λ − ‖r‖∞ − ‖β‖∞(1 + x0)
. (2.21)

The same result is valid for (Tβ,1, D(Tβ,1)).
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Proof. To simplify notation, we denote uλ,0 = uλ and define eλ(x) := e−λR(x)−Q(x) so that (2.11)

can be written as r(x)u(x) = r(x)uλ,0(x) + Ceλ(x) . On allowing x → x0 and using the boundary

condition for uλ,0 we obtain

C =

x1
∫

x0

β(y)u(y)dy =< β, u > .

Hence u(x) = uλ,0(x) + eλ(x) < β, u > /r(x) which can be solved for < β, u > yielding

< β, u >=
< β, uλ,0 >

1− < β, r−1eλ >
,

provided < β, r−1eλ >6= 1 which, after some algebra, is seen to be satisfied if λ > ‖r‖∞+‖β‖∞(1+

x0). Thus, for such λ,

u(x) = uλ,0(x) +
eλ(x)

r(x)

< β, uλ,0 >

1− < β, r−1eλ >
(2.22)

and we have the estimate

‖u‖ ≤ ‖f‖

(

1

λ − ‖r‖∞ − ‖β‖∞(1 + x0)

)

.

Following [15], we define the operator

Φλf =
eλ

r

< β, f >

1− < β, r−1eλ >
. (2.23)

This is a compact (since rank one) operator on X such that I + Φλ is invertible with inverse

(I + Φλ)−1g = g −
eλ

r
< β, g >, g ∈ X.

Simple algebra gives (I + Φλ)D(T0) = D(Tβ) so that

R(λ, Tβ)f = R(λ, T0)f +
eλ

r

< β,R(λ, T0)f >

1− < β, r−1eλ >
, (2.24)

or R(λ, Tβ) = R(λ, T0) + ΦλR(λ, T0) , with λ > ‖r‖∞ + ‖β‖∞(1 + x0) , defines the resolvent of Tβ.

The statement for Tβ,1 follows since, due to (2.20), we have

lim
x→x−

1

r(x)u(x) = lim
x→x−

1

r(x)uλ,0(x) = 0

where u is defined by (2.22). 2

2.1 The Growth-Fragmentation Equation

Let us return to the problem (2.1) and use the results developed in the previous section. First we

note that if a ∈ L∞(x0, x1), then, by (1.5) and (1.4), the operator B, given by the expression

[Bu](x) =

x1
∫

x

a(y)b(x|y)u(y)dy, (2.25)
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is bounded on X. Indeed,

‖Bu‖ ≤

x1
∫

x0

|u(y)|a(y)(y + n(y))(1 + y)−1(1 + y)dy ≤ M ess. sup
x0≤x<x1

a(x) ‖u‖, (2.26)

where M > 1 is the constant appearing in (1.4) and n(y) was defined in (1.4). In particular,

if x1 < ∞ then, by (2.3), a is bounded (a.e.) on (x0, x1). In this case there is a semigroup

{GT+B(t)}t≥0 on X associated with (2.1) which is generated by (T + B,D(T )).

Hence, the remaining part of this section is non-trivial only for x1 = ∞ with unbounded a (satisfying

(2.3)). However, for the sake of completeness, we formulate all results for the general case.

Lemma 2.5 For u ∈ D(T ) we have

x1
∫

x0

(T + B)u(x)(1 + x)dx = −Cl(x1) −

x1
∫

x0

µ(x)u(x)(1 + x)dx + (1 + x0)

x1
∫

x0

β(x)u(x)dx

+

x1
∫

x0

r(x)u(x)dx +

x1
∫

x0

(n(y) − 1)a(y)u(y)dy (2.27)

where

Cl(x1) =











0 if u ∈ D(Tβ , 1) or x1 = ∞

lim
x→x−

1

(1 + x)r(x)u(x) if u ∈ D(Tβ).

Proof. First we note that if u ∈ D(T ) ⊂ D(A), where D(A) = {u ∈ X : au ∈ X}, then Bu ∈ X.

Indeed, as in (2.26),

‖Bu‖ ≤

x1
∫

x0

|u(y)|a(y)(y + n(y))(1 + y)−1(1 + y)dy ≤ M‖au‖. (2.28)

Thus, we can separate the terms Tu and Bu in (2.27). Also, since D(T ) ⊂ D(A) and µ is bounded,

we can concentrate on the term (ru)x. Thus, taking x0 < x′ < x′′ < x1 and using the fact that

ru ∈ AC((x0, x1)) we obtain

x′′

∫

x′

(r(x)u(x))x(1 + x)dx = r(x′′)u(x′′)(1 + x′′) − r(x′)u(x′)(1 + x′) −

x′′

∫

x′

r(x)u(x)dx.

Now, by the definition of the domain, the left hand side converges to
x1
∫

x0

(r(x)u(x))x(1 + x)dx

and r(x′)u(x′)(1 + x′) → (1 + x0)
x1
∫

x0

β(x)u(x)dx as x′ → x0 and x′′ → x1. Next, the inequality

|r(x)u(x)| ≤ ‖r‖∞|u(x)|(1 + x) shows that ru is integrable on (x0, x1) and so the integral on the
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right hand side converges to
∫ x1

x0
r(x)u(x)dx. It follows that r(x′′)u(x′′)(1+x′′) converges to a limit

ℓ as x′′ → x1. Now, if x1 < ∞ and u ∈ D(Tβ) then clearly we obtain the existence of the limit

r(x)u(x)|x=x1
. If x1 < +∞ and u ∈ D(Tβ,1), then r(x)u(x)|x=x1

= 0. Finally, if x1 = ∞ and ℓ 6= 0,

then r(x)u(x) ≥ a′(1 + x)−1 for some a′ > 0 for x large enough, contradicting the integrability of

ru. Thus

lim
x′′→∞

r(x′′)u(x′′)(1 + x′′) = 0 . (2.29)

Next,

−

x1
∫

x0

a(x)u(x)(1 + x)dx +

x1
∫

x0





x1
∫

x

a(y)b(x|y)u(y)dy



 (1 + x)dx =

x1
∫

x0

(n(y) − 1)a(y)u(y)dy .

Combining all estimates we obtain (2.27). 2

Now, we have

(1 + x0)

x1
∫

x0

β(x)u(x)dx +

x1
∫

x0

r(x)u(x)dx +

x1
∫

x0

(n(y) − 1)a(y)u(y)dy

≤ ((1 + x0)‖β‖∞ + ‖r‖∞ + (M + 1)‖a‖∞)

x1
∫

x0

u(x)(1 + x)dx =: b̃‖u‖.

Defining (T̃ , D(T )) := (T − b̃I, D(T )), we see that T̃ + B := T − b̃I + B on D(T ) satisfies

x1
∫

x0

(T − b̃I + B)u(x)(1 + x)dx ≤ 0

and, since (T̃ , D(T )) also generates a positive semigroup of contractions

GT̃ (t)u = e−b̃tGT (t)u, (2.30)

we see, by Theorem 5.2 and Corollary 5.17 of [9] that there is an extension K̃ of the operator

T − b̃I + B that generates a substochastic semigroup {GK̃(t)}t≥0. Arguing as in [9, Proposition

9.29], we see that the positive semigroup {GK(t)}t≥0 associated with the problem (2.1), generated

by the extension K of T + B defined as (K, D(K)) = (K̃ + b̃I, D(K̃)), is given by {GK(t)}t≥0 =

{eb̃tGK̃(t)}t≥0 on X.

Our final task in this section is to prove that the semigroup is generated by K = T + B. Since this is

always true when B is a bounded perturbation, we need only consider the case when x1 = ∞. Define

by E the set of measurable functions that are defined on (x0,∞) and take values in R∪ {−∞,∞},

and, by Ef , the subspace of E consisting of functions that are finite almost everywhere. The space E
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is a vector lattice with respect to the usual relation ‘ ≤ almost everywhere’. Moreover, X ⊂ Ef ⊂ E

with X and Ef being sublattices of E.

The extensions of the operators with which we are working are defined in similar manner to those

in [9, Section 9.3]. Hence, we consider the expression T (given by (2.9)) on

D(Tβ) := {u ∈ X : ru ∈ AC((x0,∞)), T u ∈ Ef}

and denote it by Tβ. Similarly, we denote by B the operator defined by the expression (2.25) on

D(B) = {u ∈ X : [Bu+](x) < +∞, [Bu−](x) < +∞ a.e.}.

Using these two concepts we can define an operator that can be thought of as the maximal extension

of T + B in X:

[Ku](x) := [Tβu](x) + [Bu](x) (2.31)

with the domain D(K) = {u ∈ D(Tβ) ∩ D(B) : x → [Ku](x) ∈ X)}.

For the extension of the resolvent of Tβ we recall that

R(λ, Tβ)f = R(λ, T0)f +
eλ

r

< β,R(λ, T0)f >

1− < β, r−1eλ >
, (2.32)

where

[R(λ, T0)f ](x) =
e−λR(x)−Q(x)

r(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy.

Typically, the extension of R(λ, Tβ) is obtained first for positive functions f ∈ E for which the

expression on the right hand side of (2.32) defines a function in Ef ; that is, finite a.e. Now, we note

that the right hand side of (2.32) is the sum of two non-negative quantities so that each of them

must be finite a.e. We start by defining

L0,λf =
e−λR(x)−Q(x)

r(x)

x
∫

x0

eλR(y)+Q(y)f(y)dy

on

D(L0,λ) = {f ∈ E; x → [L0,λf±](x) is finite a.e.}

(recall that an integral of a positive measurable function is always defined). The finiteness of the

second term in (2.32) requires βL0,λf ∈ X0 = L1((x0,∞), dx) so that we define

Lβ,λf = L0,λf +
eλ

r

< β,L0,λf >

1− < β, r−1eλ >
, (2.33)

on

D(Lβ,λ) = {f ∈ E : x → [L0,λf±](x) is finite a.e., x → β(x)[L0,λf±](x) ∈ X0}.
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We note that the second term in the definition of Lβ,λ is the same as in R(λ, Tβ) since the extended

term L0,λf enters the expression in a constant multiplier.

Denoting for a moment by T̃β and L̃β,λ the analogous extensions of the operator T̃ and its resolvent

R(λ, T̃β), respectively, we see that L̃β,λ−b̃ = Lβ,λ, λ > b̃, and hence we can repeat the proof of [9,

Lemma 9.9] to show that K̃ ⊂ T̃ +B. However, as both K̃ and T̃ differ from K and T , respectively,

by the operator of multiplication by b̃, we obtain immediately that

K ⊂ T + B. (2.34)

Further, we can establish the following results.

Lemma 2.6 (a) If f ∈ D(Lβ,λ) then f ∈ L1((x0, N)) for any N < ∞, Lβ,λf ∈ C((x0,∞)) and

lim
x→x+

0

r(x)[Lβ,λf ](x) =

∞
∫

x0

β(x)[Lβ,λf ](x)dx . (2.35)

(b) r−1eλ ∈ D(A) .

Proof. From the definition of D(Lβ,λ) it is enough to consider f ≥ 0. Since L0,λf is finite almost

everywhere and eλ/r is finite and non-zero for any finite x > x0, we see that, for any N ∈ (x0,∞),

e−λR(x′)−Q(x′)

r(x′)

x′

∫

x0

eλR(y)+Q(y)f(y)dy < +∞

for some x′ > N so that
∫ x′

x0
eλR(y)+Q(y)f(y)dy < +∞ . Since eλR(y)+Q(y) → 1 as y → x0, we arrive

at the first assertion made in (a). The other two follow immediately.

To prove (b), we have, by (2.14),

0 ≤

∞
∫

x0

(1 + x)a(x)e−λR(x)−Q(x)

r(x)
dx ≤

∞
∫

x0

(1 + x)(λ + q(x))e−λR(x)−Q(x)

r(x)
dx = J(x0,∞) < ∞.

2

Theorem 2.1

K = T + B.

Proof. The proof hinges upon two results on the characterization of the generator (K, D(K)).
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First, from [9, Theorem 6.13 and p. 277] specified in the current context, K = T + B if and only if

∞
∫

x0

[Ku](x)(1 + x)dx ≥ −

∞
∫

x0

µ(x)u(x)(1 + x)dx + (1 + x0)

∞
∫

x0

β(x)u(x)dx

+

∞
∫

x0

r(x)u(x)dx +

∞
∫

x0

(n(y) − 1)a(y)u(y)dy, (2.36)

and it suffices to check (2.36) on elements of the form u = R(λ, K)f, f ∈ X+, λ > b̃.

The second crucial result follows from [9, Remark 6.21] and was used in similar way in [9, Lemma

9.11 and Theorem 9.31]. It reads that if u = R(λ, K)f, f ∈ X+, then there is g ∈ Ef,+ such that

u = Lβ,λg and Ku = λLβ,λg − g + BLβ,λg . Now, if X ∋ u = Lβ,λg, then g ∈ D(Lβ,λ) and, by

Lemma 2.6(a)(i), g ∈ L1((x0, N), (1 + x)dx) and therefore BLβ,λg ∈ L1((x0, N), (1 + x)dx) as all

other terms of the equality above are integrable.

Next, consider the decomposition

Lβ,λg = L0,λg + L′
βg = L0,λg +

eλ

r

< β,L0,λg >

1− < β, r−1eλ >
.

By Lemma 2.6(b), BL′
βg = BL′

βg ∈ X and thus L0,λg ∈ L1((x0, N), (1 + x)dx). Hence

Ku = λL0,λg − g + BL0,λg + λL′
βg + BL′

βg,

where each of the first three terms on the right-hand side is in L1((x0, N), (1 + x)dx) and the last

two are both in X. Since Ku ∈ X, we can write

∞
∫

x0

[Ku](x)(1 + x)dx = lim
N→∞

N
∫

x0

[Ku](x)(1 + x)dx (2.37)

= lim
N→∞

N
∫

x0

(λ[L0,λg](x) − g(x) + [BL0,λg](x)) (1 + x)dx +

∞
∫

x0

(

λ[L′
βg](x) + [BL′

βg](x)
)

(1 + x)dx

where the limit on the right-hand side exists. Since the integral over (x0, N) of each term within
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this limit exists, we can evaluate

N
∫

x0

[BL0,λg](x)(1 + x)dx =

N
∫

x0





∞
∫

x

a(y)b(x|y)[L0,λg](y)dy



 (1 + x)dx

=

N
∫

x0

a(y)[L0,λg](y)





y
∫

x0

b(x|y)(1 + x)dx



 dy +

∞
∫

N

a(y)[L0,λg](y)





N
∫

x0

b(x|y)(1 + x)dx



 dy

=

N
∫

x0

a(y)[L0,λg](y)(n(y) + y)dy +

∞
∫

N

a(y)[L0,λg](y)





N
∫

x0

b(x|y)(1 + x)dx



 dy

=

N
∫

x0

a(y)[L0,λg](y)(n(y) − 1)dy − λ

N
∫

x0

[L0,λg](y)(y + 1)dy −

N
∫

x0

µ(y)[L0,λg](y)(y + 1)dy

+

N
∫

x0

(q(y) + λ)[L0,λg](y)(y + 1)dy +

∞
∫

N

a(y)[L0,λg](y)





N
∫

x0

b(x|y)(1 + x)dx



 dy

= I1 − I2 − I3 + I4 + I5.

Using (2.14), we evaluate

I4 =

N
∫

x0





(q(y) + λ)e−λR(y)−Q(y)

r(y)

y
∫

x0

eλR(s)+Q(s)g(s)ds



 (y + 1)dy =

N
∫

x0

eλR(s)+Q(s)g(s)J(s,N)ds

=

N
∫

x0

eλR(s)+Q(s)g(s)



e−λR(s)−Q(s)(1 + s) − e−λR(N)−Q(N)(1 + N) +

N
∫

s

e−λR(y)−Q(y)dy



 ds

=

N
∫

x0

g(s)(1 + s)ds − (1 + N)r(N)[L0,λg](N) +

N
∫

x0

r(y)[L0,λg](y)dy.

Hence

N
∫

x0

(−g(x) + [BL0,λg](x) + λ[L0,λg](x)) (1 + x)dx = −(1 + N)r(N)[L0,λg](N)

−

N
∫

x0

µ(x)[L0,λg](x)(1 + x)dx +

N
∫

x0

r(x)[L0,λg](x)dx +

N
∫

x0

(n(x) − 1)a(x)[L0,λg](x)dx

+

∞
∫

N

a(y)[L0,λg](y)





N
∫

x0

b(x|y)(1 + x)dx



 dy . (2.38)

Let u0 := [L0,λg]. Since u0 = u − const eλ/r, we see that u0 ∈ X. Thus µu0 ∈ X and both ru0

and (n− 1)au are in L1((x0,∞), dx). Furthermore, there exists a sequence Nk → ∞ as k → ∞ for

which r(Nk)u0(Nk)(1 + Nk) → 0. Indeed, otherwise r(x)u0(x)(1 + x) ≥ ǫ > 0 for some ǫ and all
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sufficiently large x. But then r(x)u0(x) ≥ ǫ(1 + x)−1 which would contradict the integrability of

ru0. Hence

lim
k→∞

Nk
∫

x0

(−g(x) + [Bu0](x) + λu0(x)) (1 + x)dx = −

∞
∫

x0

µ(x)u0(x)(1 + x)dx +

∞
∫

x0

r(x)u0(x)dx

+

∞
∫

x0

(n(x) − 1)a(x)u0(x)dx + lim
k→∞

∞
∫

Nk

a(y)u0(y)





Nk
∫

x0

b(x|y)(1 + x)dx



 dy. (2.39)

To deal with the last two terms in (2.37), we note that g enters the expression through a constant

scalar multiplier and hence first we evaluate

∞
∫

x0





∞
∫

x

a(y)b(x|y)
e−λR(y)−Q(y)

r(y)
dy



 (1 + x)dx + λ

∞
∫

x0

e−λR(y)−Q(y)

r(y)
(y + 1)dy

=

∞
∫

x0

a(y)e−λR(y)−Q(y)

r(y)
(y + n(y))dy + λ

∞
∫

x0

e−λR(y)−Q(y)

r(y)
(y + 1)dy

=

∞
∫

x0

a(y)e−λR(y)−Q(y)

r(y)
(n(y) − 1)dy −

∞
∫

x0

µ(y)e−λR(y)−Q(y)

r(y)
(y + 1))dy + J(x0,∞)

=

∞
∫

x0

a(y)e−λR(y)−Q(y)

r(y)
(n(y) − 1)dy −

∞
∫

x0

µ(y)e−λR(y)−Q(y)

r(y)
(y + 1))dy

+(1 + x0) +

∞
∫

x0

e−λR(y)−Q(y)dy,

on using (2.14) with (2.29). Hence we obtain

∞
∫

x0

(λL′
βg(x) + BL′

βg(x))(1 + x)dx =

∞
∫

x0

a(y)L′
βg(y)(n(y) − 1)dy −

∞
∫

x0

µ(y)L′
βg(y)(y + 1))dy

+(1 + x0) < β,Lβ,λg > +

∞
∫

x0

r(y)L′
βg(y)dy

where we used

< β,Lβ,λf >=
< β,L0,λf >

1− < β, r−1eλ >
.
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Combining the above results, we see that there is a sequence (Nk)k∈N for such that

∞
∫

x0

[Ku](x)(1 + x)dx = lim
k→∞

Nk
∫

x0

[Ku](x)(1 + x)dx

= −

∞
∫

x0

µ(x)u(x)(1 + x)dx + (1 + x0)

∞
∫

x0

β(x)u(x)dx +

∞
∫

x0

r(x)u(x)dx +

∞
∫

x0

(n(x) − 1)a(x)u(x)dx

+ lim
k→∞

∞
∫

Nk

a(y)u0(y)





Nk
∫

x0

b(x|y)(1 + x)dx



 dy (2.40)

≥ −

∞
∫

x0

µ(x)u(x)(1 + x)dx + (1 + x0)

∞
∫

0

β(x)u(x)dx +

∞
∫

x0

r(x)u(x)dx +

∞
∫

x0

(n(x) − 1)a(x)u(x)dx,

which proves the thesis. 2

Remark 2.2 We note that if K = T + B then, by [9, Theorem 6.13], inequality (2.36) for u ∈

D(K) becomes equality and thus for such u we have

lim
k→∞

∞
∫

Nk

a(y)u0(y)





Nk
∫

x0

b(x|y)(1 + x)dx



 dy = 0. (2.41)

3 Global Solutions of the Growth C-F Equation

We now consider the combined coagulation and mass-growth fragmentation equation (1.3). Fol-

lowing the definition (1.2), we define the associated coagulation operator N on X by

(Nu)(x) :=
χ

U
(x)

2

∫ x−x0

x0

k(x − y, y)u(x − y)u(y) dy − u(x)χ
V
(x)

∫ x1−x

x0

k(x, y)u(y) dy

= N [u, u](x) = N1[u, u](x) −N2[u, u](x) ,

where, for u, v ∈ X,

N1[u, v](x) :=
χ

U
(x)

2

∫ x−x0

x0

k(x − y, y)u(x − y)v(y) dy

N2[u, v](x) := −u(x)χ
V
(x)

∫ x1−x

x0

k(x, y)v(y) dy .

We recall that the coagulation kernel is a non-negative, bounded and symmetric function. Hence,

for all u, v ∈ X,

‖N1[u, v]‖ ≤
‖k‖

L∞

2

∫ x1

2x0

∫ x−x0

x0

(1 + x)|u(x − y)v(y)| dy dx

=
‖k‖

L∞

2

∫ x1−x0

x0

∫ x1−y

x0

(1 + x + y)|u(x)v(y)| dx dy ≤ ‖k‖
L∞

‖u‖ ‖v‖ .
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Similarly, ‖N2[u, v] ≤ ‖k‖
L∞

‖u‖ ‖v‖ . It follows that N(X) ⊂ X with ‖Nu‖ ≤ 2‖k‖
L∞

‖u‖2 for all

u ∈ X . Moreover, for a given u0 ∈ X, if u, v ∈ B(u0, ρ) := {w ∈ X : ‖w − u0‖ ≤ ρ} then

‖Nu − Nv‖ = ‖N [u − v, u] + N [v, u − v]‖ ≤ qρ,u0
‖u − v‖ ,

where

qρ,u0
= 4‖k‖

L∞
(ρ + ‖u0‖) , (3.1)

and so N is locally Lipschitz on X. The bilinearity of N also leads to

N(u + δ) = N [u, u] + N [u, δ] + N [δ, u] + N [δ, δ] , ∀u, δ ∈ X ,

from which we deduce that N is Fréchet differentiable at each u ∈ X, with Fréchet derivative

Nuv := N [u, v] + N [v, u] , ∀v ∈ X .

Consequently, ‖Nuv‖ ≤ qρ,u0
‖v‖ , ∀v ∈ X, u ∈ B(u0, ρ) . Also, for u1, u2, g ∈ X,

‖Nu1
v − Nu2

v‖ = ‖N [u1 − u2, v] + N [v, u1 − u2]‖

≤ 4‖k‖
L∞

‖v‖ ‖u1 − u2‖ → 0 as ‖u1 − u2‖ → 0 .

Hence, the Fréchet derivative is continuous with respect to u.

These results establish the existence of positive constants ρ0, t0 and a strongly differentiable func-

tion u : [0, t0) → B(u0, ρ0) := {w ∈ X : ‖w − u0‖ < ρ0} such that

du

dt
(t) = K[u(t)] + N [u(t)] , 0 < t < t0; u(0) = u0 ∈ D(K) ∩ X+ , (3.2)

where X+ = {u ∈ X : u ≥ 0 a.e. on (x0, x1)} and K = T + B is the infinitesimal generator of the

growth-fragmentation positive semigroup {GK(t)}t≥0; see [13, Lemma 14].

To show that this local (in time ) solution is in X+ for all t ∈ [0, t0), we adopt the argument used in

[13, Chapter 8]. First we note that the solution u of (3.2) is also the unique strongly differentiable

(strict) solution of
du

dt
(t) = (K[u(t)] − αu(t)) + (αu(t) + N [u(t)]) (3.3)

for any α ∈ R. Hence u is the unique solution of the integral equation

u(t) = e−αtGK(t)u0 +

∫ t

0
e−α(t−s) GK(t − s)Nα[u(s)] ds , 0 ≤ t < t0 , (3.4)

where Nα := N + αI .

Lemma 3.1 Let α ≥ ‖k‖
L∞

(‖u0‖ + ρ0) . Then Nαu ∈ X+ for all u ∈ B(u0, ρ0) ∩ X+ .
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Proof. By definition, we have Nαu = αu + N1[u, u] −N2[u, u] . Clearly N1[u, u] ∈ X+ ,∀u ∈ X+ .

Also, for u ∈ B(u0, ρ0) ∩ X+,

χ
V
(x)u(x)

∫ x1−x

x0

k(x, y)u(y) dy ≤ ‖k‖
L∞

‖u‖ χ
V
(x)u(x) ≤ ‖k‖

L∞
(‖u0‖ + ρ0) χ

V
(x)u(x) .

Hence, if α ≥ ‖k‖
L∞

(‖u0‖ + ρ0), then

αu(x) −N2[u, u](x) ≥ αu(x) − ‖k‖
L∞

(‖u0‖ + ρ0) χ
V
(x)u(x) ≥ 0 .

2

Theorem 3.1 Let u0 ∈ D(K) ∩ X+ and let u : [0, t0) → B(u0, ρ0) be the unique strict solution of

(3.2). Then there exists t∗ ∈ (0, t0] such that u(t) ∈ X+ for all t ∈ [0, t∗) .

Proof. Let Y := C([0, t1], X) with norm ‖v‖
Y

:= max{‖v(t)‖ : 0 ≤ t ≤ t1} , where t1 is fixed in

(0, t0]. Moreover, let Σ := {v ∈ Y : v(t) ∈ B(u0, ρ1) ∩ X+ ∀t ∈ [0, t1]} , where 0 < ρ1 < ρ0, and

define

(Qv)(t) := e−αtGK(t)u0 +

∫ t

0
e−α(t−s)GK(t − s)Nα[v(s)] ds , 0 ≤ t ≤ t1 , D(Q) := Σ ,

with α ≥ ‖k‖
L∞

(‖u0‖ + ρ0) . Then Q(Σ) ⊂ Y and (Qv)(t) ∈ X+ for all t ∈ [0, t1]. Also, for all

v, w ∈ Σ,

‖(Qv)(t) − (Qw)(t)‖ ≤

∫ t

0
e−α(t−s)‖GK(t − s)‖B(X) ‖Nα[v(s)] − Nα[w(s)]‖ ds

≤ (qρ0,u0
+ α)

∫ t

0
e(b̃−α)(t−s)‖v(s) − w(s)‖ ds ,

where qρ0,u0
is defined via (3.1). Hence

‖Qv − Qw‖
Y
≤ (qρ0,u0

+ α) t1e
b̃t1 ‖v − w‖

Y
.

Similarly,

‖(Qv)(t) − u0‖ ≤ ‖e−αtGK(t)u0 − u0‖ +

∫ t

0
e(b̃−α)(t−s) ‖Nα[v(s)]‖ ds . (3.5)

Now

‖Nα[v(s)]‖ ≤ ‖Nα[v(s)] − Nαu0‖ + ‖Nαu0‖ ≤ (qρ0,u0
+ α) ‖v(s) − u0‖ + ‖Nu0‖ + α‖u0‖

≤ (qρ0,u0
+ α) ρ1 + ‖Nu0‖ + α‖u0‖ .

Hence the expression in (3.5) is bounded above by

‖e−αtGK(t)u0 − u0‖ + ((qρ0,u0
+ α) ρ1 + ‖Nu0‖ + α‖u0‖) t1e

b̃t1 .
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If we now define

ζ(t1) :=
1

ρ1
max

0≤t≤t1

{

‖e−αtGK(t)u0 − u0‖
}

+
1

ρ1
((qρ0,u0

+ α) ρ1 + ‖Nu0‖ + α‖u0‖) t1e
b̃t1 ,

then it follows that

‖(Qv)(t) − u0‖ ≤ ρ1ζ(t1), ∀t ∈ [0, t1] and ‖Qv − Qw‖
Y
≤ ζ(t1)‖v − w‖

Y
, ∀v, w ∈ Σ .

Since ζ(t1) → 0+ as t1 → 0+, we can choose t∗ so that 0 < ζ(t∗) < 1, in which case Q(Σ) ⊂ Σ .

Hence there exists a unique solution u ∈ Σ of u = Qu and so the integral equation (3.4) has a

unique solution u ∈ C ([0, t∗], X+) . 2

Corollary 3.2 Let the maximal interval of existence of the strict solution u of (3.2) be [0, T̂ ).

Then u(t) ∈ X+ for all t ∈ [0, T̂ ) whenever u0 ∈ D(K) ∩ X+ .

Proof. This can be established by using the argument presented in the last part of the proof of

[19, Theorem 4.3]. 2

To prove the global (in time) existence of a strict non-negative solution to (3.2) we shall apply

Gronwall’s inequality to establish that the local solution cannot blow up in finite time. The following

preliminary lemmas will be required.

Lemma 3.3 If u ∈ D(K) ∩ X+ then
∫ x1

x0

(1 + x)(Ku)(x) dx ≤ ([1 + x0]‖β‖∞ + ‖r‖∞ + C1) ‖u‖

where C1 is a positive constant.

Proof. Suppose first that x1 < ∞. In this case K = T + B and, from Lemma 2.5,
∫ x1

x0

(1 + x)(Ku)(x) dx ≤ (1 + x0)

∫ x1

x0

β(x)u(x) dx +

∫ x1

x0

r(x)u(x) dx +

∫ x1

x0

n(x)a(x)u(x) dx

≤ (1 + x0)‖β‖∞‖u‖ + ‖r‖∞‖u‖ + C1‖u‖ ,

where we have used (1.4), (2.3) and the assumptions on r and β stated in Theorem 1.1. The case

when x1 = ∞ follows similarly from (2.40) and (2.41). 2

Lemma 3.4 If u ∈ X+, then
∫ x1

x0
(1 + x)(Nu)(x) dx ≤ 0.

Proof. Let u ∈ X+. Then
∫ x1

x0

(Nu)(x)x dx

= −

∫ x1−x0

x0

∫ x1−x

x0

xk(x, y)u(x)u(y) dy dx +
1

2

∫ x1

2x0

∫ x−x0

x0

xk(x − y, y)u(x − y)u(y) dy dx

= −

∫ x1−x0

x0

∫ x1−x

x0

xk(x, y)u(x)u(y) dy dx +
1

2

∫ x1−x0

x0

∫ x1−y

x0

(x + y)k(x, y)u(x)u(y) dx dy = 0 .
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Similarly,
∫ x1

x0

(Nu)(x) dx = −
1

2

∫ x1−x0

x0

∫ x1−y

x0

k(x, y)u(x)u(y) dx dy ≤ 0 ,

and the stated result follows. 2

After these preliminaries, the proof of the main result is straightforward.

Proof of Theorem 1.1. Since the local solution u is a non-negative strict solution of (3.2), it

follows from Lemmas 3.3 and 3.4 that

d

dt
‖u(t)‖ =

∫ x1

x0

(1 + x)(K[u(t)](x) dx +

∫ x1

x0

(1 + x)(N [u(t)])(x) dx

≤

∫ x1

x0

(1 + x)(K[u(t)])(x) dx ≤ ([1 + x0]‖β‖∞ + ‖r‖∞ + C1) ‖u(t)‖ + C2

for 0 ≤ t < T̂ . Consequently, ‖u(t)‖ ≤ (‖u0‖ + C2/C3) exp (C3t) − C2/C3 for all t ∈ [0, T̂ ), where

C3 = [1 + x0]‖β‖∞ + ‖r‖∞ + C1 , and the result follows. 2
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Kinetic Theory, Birkhäuser Verlag, Basel, 1987.

[18] G. A. Jackson, A model of formation of marine algal flocks by physical coagulation processes,

Deep-Sea Research, 37, (1990), 1197–1211.

26



[19] W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation

equation, Math. Methods Appl. Sci., 27 (2004), 703–721.
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