Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Diversity oriented syntheses of fused pyrimidines designed as potential antifolates

Gibson, Colin L. and Huggan, J.K. and Kennedy, Alan and Kiefer, L. and Lee, Jeong Hwan and Suckling, C.J. and Clements, Caorl J. and Harvey, Alan L. and Hunter, William N. and Tulloch, Lindsay B. (2009) Diversity oriented syntheses of fused pyrimidines designed as potential antifolates. Organic and Biomolecular Chemistry, 7 (9). pp. 1829-1842. ISSN 1477-0520

[img]
Preview
PDF
diversity_oriented_synthesis_of_fused_pyramidines.pdf
Final Published Version

Download (346kB) | Preview

Abstract

Diversity oriented syntheses of some furo[2,3-d]pyrimidines and pyrrolo[2,3-d]pyrimidines related to folate, guanine, and diaminopyrimidine-containing drugs have been developed for the preparation of potential anti-infective and anticancer compounds. Amide couplings and Suzuki couplings on the basic heterocyclic templates were used, in the latter case yields being especially high using aromatic trifluoroborates as the coupling partner. A new ring synthesis of 6-aryl-substituted deazaguanines bearing 2-alkylthio groups has been developed using Michael addition of substituted nitrostyrenes. Diversity at C-2 has been introduced by oxidation and substitution with a range of amino nucleophiles. The chemical reactivity of these pyrrolopyrimidines with respect to both electrophilic substitution in ring synthesis and nucleophilic substitution for diversity is discussed. Several compounds were found to inhibit pteridine reductases from the protozoan parasites Trypanosoma brucei and Leishmania major at the micromolar level and to inhibit the growth of Trypanosma brucei brucei in cell culture at higher concentrations. From these results, significant structural features required for inhibition of this important drug target enzyme have been identified.