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This paper describes the design of a three-dimensional formation flying guidance and 

control algorithm for a swarm of autonomous Unmanned Aerial Vehicles (UAVs), using the 

new approach of bifurcating artificial potential fields. We consider a decentralized control 

methodology that can create verifiable swarming patterns, which guarantee obstacle and 

vehicle collision avoidance. Based on a steering and repulsive potential field the algorithm 

supports flight that can transition between different formation patterns by way of a simple 

parameter change. The algorithm is applied to linear longitudinal and lateral models of a 

UAV. An experimental system to demonstrate formation flying is also developed to verify 

the validity of the proposed control system.  

Nomenclature 

F = artificial potential function 

FS = steering potential function 

FR
 = repulsive potential function 

μ = bifurcation parameter 

ρ =  parameter of formation pattern 

Ch = amplitude parameter of hyperbolic potential function 

Cr = amplitude parameter of repulsive potential function 

Lr = length parameter of repulsive potential function 

Ce = amplitude parameter of exponential potential function 

Le = length parameter of exponential potential function 

r = UAV position vector 

v = UAV velocity vector 

U = forward velocity 

V = side velocity 

W = vertical velocity 

p = roll rate 

q = pitch rate 

r = yaw rate 

φ = roll angle 

θ = pitch angle 

ψ = yaw angle 

δe = elevator deflection from trim condition 

δa = aileron deflection from trim condition 
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δr = rudder deflection from trim condition 

δt = thrust offset from trim condition 

X, Y, Z = Forces of translational motion 

L, M, N = Moments of forces 

Φ,Θ,Ψ = Euler angles  

 

I. Introduction 

NMANNED Aerial Vehicles (UAVs) have been applied to many applications such as scientific data gathering 

and reconnaissance for civil or military purposes. As the number of UAVs has increased decentralized control 

methods have been developed to overcome the complexity of a UAV system, as controlling the system in a 

centralized way becomes unrealistic. In the area of swarming systems some of the research is motivated by emergent 

and self-organizational behavior in nature. By using a concept of behavioral control architecture, taking inspiration 

from the natural world, we can design a control system that has the advantages of a being a scalable, robust, and 

flexible system.  

U 

Artificial potential fields are an example of a behavior based architecture applied to the design of controllers for 

swarming systems.1-7 The basic idea of the theory is to create a workspace where each UAV is attracted towards 

equilibrium states whose stability is generally guaranteed by the Lyapunov direct method. There is, however, a 

possibility that a control system becomes overly complex when the goal state varies during a mission.1 Bennet and 

McInnes have applied classical bifurcation theory to the potential field to overcome this problem.4, 5 The method, 

which is simple and fast to execute, can allow for different configurations to be formed through a simple parameter 

change of the potential function. In this paper, we expand the method so as to be able to form a three-dimensional 

flight configuration.  

 There has been considerable focus on theoretical studies in the area of multiple UAVs, 7-11 however, experimental 

results8 validating the design of a formation controller are still rare. In general, the workload required to maintain a 

formation and to complete any mission in real time will be proportional to the number of UAVs. The system must 

make progress towards a goal state while avoiding unexpected obstacles and vehicle collisions. Thus we have 

developed an experimental system for UAVs such that each is able to operate autonomously. The aim of this paper 

is to develop a control methodology for a mission such as three-dimensional formation flying of UAVs and to verify 

its validity through numerical simulation and experiments.  

II. Formation Flying 

A. Guidance Law 

Figure 1 shows inertial coordinate system o-xyz and position vectors of UAVs. 

 

Figure 1.  Definition of position vectors. 
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 We consider a swarm of homogeneous UAVs, which are treated as a particles, each of which interacts via an the 

velocity field vi (1 ≤ i ≤ n) using a steering potential F S and a repulsive potential F R governed by Eq. (1)  
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where uc is the constant desired final speed.  

The desired command speed and heading angle of each UAV are therefore 
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 The steering potential4 F S is defined as shown in Eq. (6).   
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where Ch represents the amplitude of hyperbolic potential function, μ is the bifurcation parameter, Ce and Le 

represent the amplitude and length scales, respectively, of the exponential potential function, ρ  is desired parameter 

of formation pattern and subscript d denotes desired value. We define ρi by the following equation 

 [ ]Tiii xl ′= ,Tρ  (7) 
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Three-dimensional formation flying can be achieved by manipulating the parameter matrix T∈R2 and the Direction 

Cosine Matrix (DCM). If T is [1 0] the circle formation pattern is generated. In the case of [0 1] a straight formation 

pattern is generated .In addition we can change angle of the plane formation pattern formed using the Euler angles, 

Φ, Θ , and Ψ.  



 Depending on the value of μ, the steering potential can change the number of stationary points and have various 

forms. Figures 2 and 3 show examples of the potential field when μ is negative and positive. In particular, the 

steering potential has one state of dynamical equilibrium at a desired distance r as shown in Figs. 2(a) and 3(a) when 

the parameter μ is negative. On the other hand, when μ is positive the steering potential has two stationary states as 

shown in Figs. 2(b) and 3(b). These results imply that the formation pattern can be changed easily through 

manipulation of the parameter μ , ρd, T, Φ, Θ and Ψ.  

 

Stationary states 
Stationary state 

(a) μ < 0 (b) μ > 0 

Figure 2.  Bifurcating potential field (T= [0 1], d =0, Ce=3, Le=3, Ch=3).  
 

Figure 3.  Bifurcating potential field (T= [1 0], , ρd =10, Ce=1.5, Le=5, Ch=0.2). 

Stationary state 

(b) μ > 0 

Stationary states 

(a) μ < 0 

 
 

 The repulsive potential12 is defined in the following equation 
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where Cr and Lr represent the amplitude and length scales of the repulsive potential function, respectively, and  

| rij | = | ri � rj |. The total repulsive bound velocity on the ith UAV is dependent on the position of the other (n-1) 

UAVs in the formation. The repulsive potential is therefore used to ensure that as the UAVs are steered towards the 

goal state they do not collide with each other. 

 In order to use the proposed methods for applications in real-world, it is important that the stability of the system 

is determined to ensure that described behaviors will occur. To determine the stability, we consider two methods 
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Lyapunov�s Second Theorem and an eigenvalue analysis of the linearized equations of motion.4,5 The results of this 

analysis indicate that the system  can always be considered as stable.  

 

B. Control Law 

 To achieve steady-state flight we use a robust controller for a linear time-invariant multi-variable system.13 We 

can express state and output equations for longitudinal and lateral motion which is linearized around the equilibrium 

point, as 
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 )(Cx)(y tt =  (10) 

Firstly we define the error e (t) between the output y and input yd as shown in Eq.(11) . 
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We differentiate Eq. (9) obtaining 
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Combining Eqs. (12) and (13) we have a system as follows; 
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In order to make this system stable we should consider the rank of the following matrix derived from Eq. (14).  
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gure 4.  Block diagram of controller of the linear time-invariant multi-variable system. 



where n is the order of the matrix A and p is the number of outputs. Accordingly, we can control only two variables 

for both the longitudinal and lateral equations, and we choose U andθ for longitudinal motion, and φ and ψ for 

lateral motion to control speed and attitude. The input for longitudinal and lateral motions of this controller u is 

given by Eq. (16) 

  (16) ∫−−=
t

dtttt
0

21 )()()( eKxKu

where K1 and K2 are the feedback gains of this controller. 

 The system we developed to achieve formation flying is summarized in Fig.5. 
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III. Numerical Simulation 

A. UAV Dynamics 

To simulate swarm control of the UAVs, we used a model14 for the UAV that is linearized about straight and 

level flight conditions with a forward speed of 12.5m/s and θ 0=-0.447deg. Figure 6 shows the definition of the state 

variables and control inputs. 
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where U, V, W, p, q, r, φ, θ, ψ  are variables and, δt, δa, δr, δe are deflections of moving surfaces from trim 

conditions. Tables 1 and 2 show the linearized parameters of longitudinal and lateral motions, respectively. 

Subscripts denote partial derivatives respect to the parameters.   
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Figure 5.  Block diagram of the whole system.
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B. Simulation Results 

A numerical simulation was performed to verify the proposed control law. We were able to generate different 

formations, such as a ring or a cluster by using the potential functions. The ring formation places UAVs on a circle. 

They can be formed on concentric circles with different radii by changing parameters in the hyperbolic potential 

function. The cluster formation closes up UAVs equally with distances determined by parameters of the repulsive 

potential function. 

Figure 7 shows the transition of a formation of 3 UAVs flying with no wind. The simulation parameters are set 

to μ=0, T= [1 0], Φ=0, Θ=0, Ψ=0, Cr=2, Lr=2, Ch=2. Poles of the controller are placed at -10. The formation pattern 

changed from a small ring (ρd=5) to a cluster (ρd=0) to a large ring (ρd=20). As can be seen from the values of the 

desired radius in Fig.8, the system changes from a small ring to a cluster to a large ring every 10 s and we can see 

that each UAV attained desired radius. This is achieved through a simple parameter change and is one of the 

advantages of using a bifurcation equation as the basis for the artificial potential functions, as we do not need to 

control each UAV individually. The other parts of Fig.8 show the UAVs speed, angular velocity, Euler angles and 

the control inputs. The saturation limits for the aircraft control surfaces are δe= ±0.35rad and δa, δr = ±0.79rad, thrust 

is−0.35<δt<5.45N and we can see that the controller is within its limits. 

Figure 9 shows the time responses of the controlled variables of the UAV. From the results, it can be seen that 

each variable followed the commands satisfactory. 

  

θ

φ  
ϕ

U  

W
Figure 6.  Definitions of state variables and control inputs. 

Table 2. Linearized parameters for lateral motion. 

YU [s-1]  -0.68 

Yp  [m s-1]  -0.11 

Yr  [m s-1]  -12.20 

LV  [m-1 s-1]  -32.17 

Lp  [s-1]  -56.38 

Lr  [s-1]  19.30 

NV [m-1 s-1]  7.89 

Np  [s-1]  -3.13 

Nr  [s-1]  -4.00 

Yδa [m s-2]  -3.34 

Yδr [m s-2]  22.99 

Lδa [s-2]  -26.88 

Lδr [s-2]  -6.80 

Nδa [s-2]   58.46 

Nδ t [kg-1 m-1]  -226.79 

Table 1. Linearized parameters for longitudinal motion.

XU [s-1]  -0.13 

XW [s-1]  0.14 

ZU [s-1]  -3.17 

ZW [s-1]  -13.06 

Zq  [m s-1]  1.37 

Uo [m]  12.5 

MU [m-1 s-1]  -1.95 

MW [m-1 s-1]  -17.41 

Mq [s-1]  -21.86 

Xδe [m s-2]  0 

Xδ t [kg-1]  2.32 

Zδe [m s-2]  -7.73 

Zδ t [kg-1]  0 

Mδe [s-2]   -205.25 

Mδ t [s-2]  0 

                                                                             



Figure 7.  Flight trajectories. 

t=10, ρd=0

t=20, ρd=20 

t=30
t=0,ρd=5 

 
 

Figure 8.  Time histories of speed, angular rate, Euler angles, inputs and distance from desired radius (UAV A). 
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Figure 9.  Time histories of speed and Euler angles(UAV A). 
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IV. Experiment 

We developed an experimental system for formation flying of multiple UAVs to test the validity of the proposed 

formation controller. Each UAV, which is controlled by a throttle and control surfaces, the elevator, the ailerons, 

and rudder, needs absolute position, attitude, altitude and ground speed for formation flying using the law described 

in the preceding chapter. The avionics consists of a GPS module, which provides the ground speed, altitude and 

heading angle, a microcomputer, which controls a UAV autonomously, and an inertial measurement unit (IMU), 

which measures accelerations along 3axes and angular rates around 2axes. Attitude angles can be solved for using 

the measured acceleration. The system configuration for autonomous flying is illustrated in Fig.10. In order to cope 

with the emergency of a system malfunction during automatic control, a radio control transmitter can also operate 

the UAV. Figure 11 shows the method of communication between UAVs and a ground station. A ground station 

sends guidance commands U, φ, θ  and ψ to each UAV. Each UAV transmits its position to the ground station.  We 

developed the UAVs as shown in Figs. 12 and 13.  

Tables 3 to 6 show the specification of the avionics built into the UAV. Table 7 describes the specification of the 

UAV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground station

UAV A UAV B UAV C

Radio 

communication

 

Figure 11.  Overview of experimental system. 
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Figure 10.  System configuration of UAV. 



 
Table 3.  Microcomputer(SH7145F).  

CPU HD64F7145F50  
Operation clock  [MHz] 49.152  

 SCI×4ch 
 10bit A/D converter×8chFunctions 
 

16bit timer 
 

 Table 4.  IMU (IDG-300). 
 Acceleration [g] -3~3 
 Sensitivity [mV/g] 300 
 

Angular rate [deg/s] -500~500 

Sensitivity     [mV/deg/s] 
 

2.0  
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 Table 5.  Radio communication module (MU-2-429).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. Conclusion 

In this paper, we have described how a guidance law with an artificial potential field and bifurcation theory can 

change formation patterns easily with a simple parameter change and we have extended this law to three-

dimensional formation flying. The numerical results showed that a guidance law based on the potential function is a 

viable method to control formation flying of UAVs. We developed a UAV that has an inertial navigation system and 

a global positioning system. The UAV satisfied the specifications required to perform experiments in formation 

flying. A flight-testing program using the experimental system will be demonstrated to verify the proposed 

controller. 
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