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Abstract

We investigate a model for micro-gas-flows consisting of the Navier-Stokes equa-

tions extended to include a description of molecular collisions with solid boundaries,

together with first and second order velocity slip boundary conditions. By considering

molecular collisions affected by boundaries in gas flows we capture some of the near-wall

effects that the conventional Navier-Stokes equations with a linear stress/strain-rate re-

lationship are unable to describe. Our model is expressed through a geometry-dependent

mean-free-path yielding a new viscosity expression, which makes the stress/strain-rate

constitutive relationship non-linear. Test cases consisting of Couette and Poiseuille

flows are solved using these extended Navier-Stokes equations, and we compare the re-

sulting velocity profiles with conventional Navier-Stokes solutions and those from the

BGK kinetic model. The Poiseuille mass flow-rate results are compared with results

from the BGK-model and experimental data, for various degrees of rarefaction. We as-

sess the range of applicability of our model and show that it can extend the applicability
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of conventional fluid dynamic techniques into the early continuum-transition regime.

We also discuss the limitations of our model due to its various physical assumptions,

and we outline ideas for further development.

keywords: Micro Gas Flows, Navier Stokes Equations, Mean Free Path, Non Linear

Constitutive Relationships, Velocity Slip, Knudsen Layer
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1 Introduction

As interest in micro-gas-flow applications is growing with improved manufacturing capa-

bilities, it is also becoming more widely appreciated that the conventional incompressible

Navier-Stokes (NS) equations with no-velocity-slip boundary conditions fail to predict many

of these flows properly. This is because micro-gas-flows differ from macro-gas-flows due to

the relatively large ratio of the confining boundary surface area to the volume of the confined

gas, meaning that certain surface effects must be taken into account. These surface effects

considerably influence the flow in the near-wall region (the Knudsen-layer) which, because of

the small scale of the system, comprises a substantial volume of many micro-gas-flows. The

width of this Knudsen-layer is usually expressed in terms of the average travelling distance

of molecules between intermolecular collisions — the mean free path, λ. The Knudsen-layer

is about one to two mean free paths wide.

To indicate the degree of rarefaction, or state of non-equilibrium, of gas flows the key

parameter is the Knudsen number,

Kn =
λ

H
, (1)

where for example, for a micro-channel the full height, H , of the channel is the measure of

the system length scale. Micro-gas-flows often have relatively large Kn due to the small

length scales, and certain rarefaction effects then become apparent. Experiments, such as

those performed by Arkilic et al. [1] and Colin [2], have shown that the NS equations cannot

capture the correct mass flow rates along a micro-channel without requiring a velocity slip

boundary condition to be applied. The conventional no-slip boundary condition commonly

used with NS is valid only for cases where the gas is in a state of near-equilibrium. Micro-gas-
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flows of relatively large Kn require different boundary conditions [3]. The lower threshold

value for applying a slip boundary condition is generally Kn = 0.01, which therefore is

referred to as the lower limit of the “slip regime”. For gas-flows at larger Kn, further

modelling modifications are needed because the linear constitutive NS relationships break

down. This happens at about Kn = 0.1, which is known as the lower limit of the “continuum-

transition” regime: the gas-flow is not modelled well either by a conventional continuum

description nor by a free molecular description. This is the regime that we mostly focus on

in this paper.

Modelling of surface effects in the Knudsen-layer should ideally be performed using kinetic

theory. However an approximate extension to the NS model would be less demanding in

terms of computational capacity, and the simplicity and practicality of NS make it desirable

to solve flow cases using this model for as high-Kn flows as possible. As suggested by Guo

et al. [4] NS may be extended to larger Kn by incorporating the gas molecular interactions

with unyielding boundary walls through modification of the conventional expression of the

molecular mean free path. In this paper, by considering the molecular interactions with

the walls, we obtain an “effective” geometry-dependent mean free path, λeff, which is in

turn used to obtain an “effective” fluid viscosity, which follows through into a non-linear

stress/strain-rate relationship.

We solve our new NS model for isothermal cases using velocity slip boundary conditions

of first order as well as of second order and focus on the predictions of Couette and Poiseuille

velocity flow profiles and the Poiseuille mass flow rate (all in planar-wall channel geometries).
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2 Velocity slip

The commonly-used velocity slip boundary condition proposed by Maxwell [5] has the fol-

lowing form for isothermal cases:

U slip = −2 − σ

σ

λ

µ
τwall, (2)

where U is the mass average velocity vector, τ is the viscous stress vector1, tangential to

the surface, and µ is the gas dynamic viscosity. The tangential momentum accommodation

coefficient, σ, describes the proportion of molecules being reflected diffusively (σ = 1) from

the wall as opposed to those that experience specular reflections (σ = 0). If the reflections

of the molecules are diffusive their tangential momentum is, on average, lost relative to the

wall, as opposed to specular reflections where the tangential momentum is retained. In Eq.

(2), “slip” denotes the velocity difference between the wall and the gas next to the wall, for

which the notation “wall” is used.

We obtain a first order velocity slip by inserting the tangential viscous stress vector of

the NS equations into Eq. (2). The velocity slip for planar walls can then be expressed as:

U slip = −2 − σ

σ
λ

(
∂U

∂y

)

wall

= −C1λ

(
∂U

∂y

)

wall

, (3)

where y is the coordinate perpendicular to the wall and in this case y = 0 is the middle of

the channel.2 As listed by Karniadakis et al. [7], while the coefficient C1 is set to 1 by many

investigators, Cercignani [7] uses C1=1.1466. Following the latter, we set the coefficient

1The viscous tangential stress vector, τ , relates to the viscous stress tensor, Π, through the expression

τ = (n̂ ·Π) · (I − n̂n̂), where n̂ is the unit vector normal to a surface and I is the identity tensor [6].
2In Eq. (3) and Eq. (4) the “–” sign is applied to the first order velocity gradient if the boundary is in

the direction of increasing y, otherwise “–” is replaced with “+” in these equations.
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C1 = 1.1466 when using the conventional NS with first order slip.

Some investigators of micro-gas-flows argue that second order velocity slip boundary

conditions should be used when modelling gas flows in the transition regime [3, 7, 8]. There

are several suggested formulations for second order velocity slip; for planar walls and for our

coordinate system most have the following form:

U slip = −C1λ

(
∂U

∂y

)

wall

− C2λ
2

(
∂2

U

∂y2

)

wall

, (4)

and there are various proposals for the modelling parameters C1 and C2. Some are purely

theoretically derived, whereas others have been obtained through comparisons with experi-

mental results [8]. The commonly used value for C1 in the second order slip is the same as

for the first order slip, and the C2 parameter varies in a wide range from -0.5 to 5π/12. We

choose to use, for NS using second order slip, Cercignani’s proposed slip boundary coefficients

C1 = 1.1466 and C2 = 0.647 [7].

Generally, kinetic derivations of the velocity slip such as the one performed by Cercig-

nani are based on a diffuse reflection approximation for the gas/surface interaction [9]. An

alternative approach to this is to use a correction for the gas/surface interaction using the

coefficient (2 − σ)/σ in Eq. (2). We are interested in the way the surface not only modifies

the slip coefficients but also affects the mean free path locally. Therefore, we start with the

formal first and second order velocity-slip expressions, Eqs. (3) and (4), respectively, and use

instead a mean free path modified to incorporate the effect of a surface, λeff, i.e.

U slip = −A1λeff

(
∂U

∂y

)

wall

, (5)

and

U slip = −A2λeff

(
∂U

∂y

)

wall

− A3λ
2
eff

(
∂2

U

∂y2

)

wall

. (6)
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These expressions have coefficients A1, A2 and A3 different from the conventional coefficients

using C1 and C2. This is because λeff is expected to incorporate some surface effects, most

likely requiring a change in the slip coefficient values. The conventional velocity-slip defini-

tions represent surface effects through their slip coefficients rather than through the mean

free path model.

In what follows, we present a model for the mean free path that takes into account the

bounding solid surfaces.

3 Navier-Stokes equations and geometry-dependent vis-

cosity

Since micro-gas-flows have a large ratio of their confining boundary areas to their volumes,

in the fluid mechanical model we should account for gas molecular collisions with the solid

boundaries in addition to accounting for intermolecular collisions. This modelling modifica-

tion is expected to have a significant effect only for confined micro-gas-flows, with negligible

effect for larger scale gas-flows.

Here we use the relationship:

µ = ρ
λ√

π/2RT
, (7)

which is discussed in further depth by Cercignani [9], relating the dynamic viscosity, µ,

to the mean free path, λ, with ρ the gas density, R the specific gas constant and T the

gas temperature. We assume that Eq. (7), which is normally valid only for gases in local

equilibrium far from surfaces, remains formally valid at the surface even after taking into
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account that the mean free path is affected by gas molecular collisions with surfaces. If

the “unconfined” expression for the mean free path, λ, is replaced by an “effective” and

geometry-dependent mean free path, λeff, we obtain a non-constant, geometry-dependent,

“effective” viscosity, µeff, that can be used in the momentum conservation equation:

Π = µeff

[
∇U + (∇U )t] +

(
2

3
µeff − κ

)
(∇ ·U ) I, (8)

where κ is the bulk viscosity, I is the identity tensor and t is the transpose operator. Our

modification in Eq. (8) is analogous to replacing the NS stress expression with the Burnett

(or other high-order) stress expression in the general momentum conservation equation.

For many steady state micro-gas-flow situations the flow is extremely slow. This means

that the inertia term, ρ(U · ∇)U , can be discarded. The conventional NS equations then

reduce to the Stokes equation [7], which for our new approach would have the following form:

∇ · µeff

[
∇U + (∇U )t] = ∇p. (9)

We now need to derive a new expression for the mean free path, λeff, and hence obtain µeff.

4 Previous effective mean free path models

The idea of using transport parameters that are influenced by an effective mean free path

can be traced back to Stops [10]. Stops investigates the probability density

p(r) =
1

λ
exp

(
− r

λ

)
, (10)

describing the distribution of the molecular free path in terms of the free flight length r. The

value of the unconfined, conventional mean free path, when no solid boundaries are present,

can then be obtained by integrating rp(r), with respect to r, from zero to infinity.
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The effective mean free path expression developed by Stops, λeff(S), is derived by using

solid-angle-analysis and by shortening the upper integrational limit of r from infinity to the

distance to the confining wall. The integration of rp(r) then yield λeff(S) = λK(S)(y, λ, H)

for molecules in a planar wall confinement, where H is the wall spacing and

K(S)(y, λ, H) =
1

2

{
2 +

(
H/2 + y

λ
− 1

)
exp

(
−H/2 + y

λ

)
−

(
H/2 + y

λ

)2

Ei

(
H/2 + y

λ

)

+

(
H/2 − y

λ
− 1

)
exp

(
H/2 − y

λ

)
−

(
H/2 − y

λ

)2

Ei

(
H/2 − y

λ

)}
.

(11)

This expression is used by Guo et al. [4] in solving their micro-gas-flows. The function Ei

in Eq. (11) is the exponential integral function defined as:

Ei(z) =

∫
∞

1

t−1 exp (−zt) dt. (12)

In the next section we derive a model similar to λeff(S) but without the dependence on

the Ei(z)-function, which may therefore be easier to implement and more computationally

efficient for micro-gas-flow calculations.

5 A probability function-based effective mean free path

model

We use instead the integrated form of the density function p(r), defined in Eq. (10), referred

to as the probability function, i.e.

P (r) =

∫
p(r)dr = C − exp

(
− r

λ

)
. (13)
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This function describes the probability a molecule travels a distance r + dr without experi-

encing a collision. The integration constant, C, is set to one so that the probability ranges

from zero to one.

Our model is derived for the two-planar-wall configuration shown in Fig. 1. We use the

notation r− if the molecule is travelling in the negative y-direction, and r+ if the molecule

is travelling in the positive y-direction. We also use the notations θ− and θ+ for the equally

probable zenith angle travelling direction of the molecule. These quantities are related

through r− = (H/2 + y)/ cos(θ−) and r+ = (H/2 − y) / cos(θ+).

Figure 1: A molecule confined between two planar walls with spacing H . The molecule has

an equal probability to travel in any zenith angle θ− or θ+ or to travel in either the positive or

negative y-direction. The molecule under consideration is assumed to have just experienced

an intermolecular collision at its current position H/2 − y.

The molecular free path, l, is retrieved by weighting the unconfined molecular mean free

path, λ, with P as follows:

l =λ
1

2

[
P (r−) + P (r+)

]

=λ

{
1 − 1

2

[
exp

(
−r−

λ

)
+ exp

(
−r+

λ

)]}
. (14)

A 3-dimensional mean free path depending on the molecule’s distance to a wall is then
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obtained by averaging the free path with respect to θ− and θ+ in the range [0, π/2] using

the mean integral theorem,

〈X(θ∗)〉 =
2

π

∫ π/2

0

X(θ∗)dθ∗, (15)

where the integrational domain is illustrated in Fig. 2 for a molecule travelling in the negative

y-direction. Averaging over the free path in Eq. (14) may be done using Simpson’s numerical

Figure 2: A molecule at a distance H/2 + y from a planar wall; possible trajectories for a

molecule travelling in the negative y-direction in cylindrical coordinates [H/2 + y, (H/2 +

y) × tan θ], where ∞ denotes infinity.
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integration involving 14 subintervals3 results in λeff = λK(y, λ, H), where

K(y, λ, H) =1 − 1

82

[
exp

(
−H/2 + y

λ

)
+ exp

(
−H/2 − y

λ

)

+ 4
7∑

i=1

exp

(
− H/2 + y

λ cos [ (2 i − 1) π/28]

)

+ 4
7∑

i=1

exp

(
− H/2 − y

λ cos [ (2 i − 1) π/28]

)

+2

6∑

i=1

exp

(
− H/2 + y

λ cos [π i/14]

)
+ 2

6∑

i=1

exp

(
− H/2 − y

λ cos [ π i/14]

)]
. (16)

In the remainder of this paper we will focus on the y-dependence of K, as λ and H are

determined through the rarefaction parameter Kn and the micro-channel geometry, respec-

tively. The different K-functions, Eq. (11) and Eq. (16), are compared in Fig. 3 for four

Kn: KnA = 0.04, KnB = 0.25, KnC = 1 and KnD = 20. It is seen that both models show

similar results for all Kn-cases, with the largest difference at KnC . By inspection of the

KnA-case, both models fulfil the physically intuitive requirements that

K(0) ≈ 1 and K(H/2) ≈ 1

2
. (17)

The requirement at the wall can be realised by considering the average of the equal prob-

abilities of a molecule travelling in the direction towards the confining wall (not yielding

any travelling length contribution) and the probability of it travelling into the bulk of the

flow (yielding a contribution of the length λ). The requirement for molecules far away from

the wall is that the effective mean free path should approach its conventional unconfined

value. For KnB = 0.25, the channel is four unconfined mean free paths wide; since the

3The difference in our mass flow results, see below, for 14 and 16 integration intervals is 1.54% for Kn = 1,

indicating that further increase of the number of integration intervals will only marginally affect the results.
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Figure 3: Comparison of different λeff-models in a half-channel for different Knudsen num-

bers, where λeff = λK(y) and KnA = 0.04, KnB = 0.25, KnC = 1 and KnD = 20.

effective mean free path almost achieves the conventional unconfined value at y = 0, the

Knudsen-layer can be said to be approximately two unconfined mean free paths wide.

For higher Kn, the entire K(y) profile is lowered due to Knudsen-layer overlap and

thereby an increasing likelihood of wall collisions. The basic physical requirement of de-

creasing K(y) with increasing Kn can be seen by inspection of the considerably lower profile

of the KnD-case compared to the other cases. The KnB and KnC cases represent inter-

mediate states between the KnA and KnD cases, where the profile near the wall is lower

than the near-wall requirement in Eq. (17) because a molecule close to one of the walls has

a significant probability of travelling directly to the other side of the channel and colliding

with that wall, which results in a contribution of less than a mean free path for this travelling

direction.
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In the next section we present simple flow test cases using our λeff-dependent parameter

µeff within the Navier-Stokes equations.

6 Test case results

Isothermal, fully-developed velocity profiles in planar Couette and Poiseuille flow are calcu-

lated from our modified Stokes equation:

∂

∂y

[
µeff

∂Ux

∂y

]
=

∂p

∂x
, (18)

which uses an effective viscosity derived by using λeff in Eq. 7. The velocity Ux is in the axial

direction (x-direction) of the channel and it is assumed to vary only in the direction normal

to the wall, the y-direction. This model is applied in turn with the first order velocity slip of

Eq. (5) and then with the second order velocity slip of Eq. (6), in which λ is again replaced

by its near-wall value, at y = H/2, of λeff. As this is now a different slip model than the

conventional one, we choose to set the coefficients A1 = 1 for our first order velocity slip

and A2 = 0.05 and A3 = 0.63 for our second order velocity slip; These values for our present

model are chosen purely based on which produce the best velocity profile results in the

Couette and Poiseuille flows, and the mass flow rate in the Poiseuille flow. Since our present

model uses a slip definition that has a different velocity gradient at the wall compared to

NS, and we apply a wall value of λeff instead of the unconfined value, it is not expected that

the slip coefficients should have their conventional values.

It is shown by experimental investigators, like Turner et al. [11], that micro-gas-flows

have compressible characteristics even when the flow velocities are less than Mach 0.3. Due

to this, we use the same solution method to solve for this compressible flow as in Kandlikar et
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al. [12], i.e. the normalised velocity profile in the channel cross section of the flow is obtained

by assuming fully-developed incompressible flow, but the density is then recalculated using

the ideal gas law. The mass flow rate in the Poiseuille flow case is calculated through

cross-channel integration of the velocity profiles.

6.1 Couette flow

In Couette flow the pressure gradient of Eq. (18) is assumed negligible, yielding the governing

equation:

∂

∂y

(
µeff

∂Ux

∂y

)
= 0, (19)

where µeff = µK(y, λ, H). The solution to this equation, which we refer to as the “NSeff-

solution”, using the first order λeff-dependent velocity slip, is

Ux

Uw
=

F (y) − F (y = 0)

F (y = H/2) + A1λ − F (y = 0)
, (20)

where

F (y) =

∫
1

K(y)
dy, (21)

and Uw is the velocity of the wall. The NSeff-solution using the second order velocity slip is:

Ux

Uw
=

F (y) − F (y = 0)

F (y = H/2) + A2λ − A3λ2K ′(y = H/2) − F (y = 0)
, (22)

where

K ′(y) =
dK(y)

dy
. (23)

The conventional solution to Eq. (19), with constant viscosity and boundary conditions
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applied using the conventional λ, is as follows4:

Ux

Uw

=
y

H/2 + C1λ
. (24)

The NSeff-solutions, Eq. (20) and Eq. (22), and the NS solution Eq. (24) are compared in

Figs. 4 and 5 for five different Kn of 0.01, 0.04, 0.08, 0.113 and 0.339, alongside the kinetic

BGK-model solution obtained by Sharipov [13].

Figure 4 shows that for KnE = 0.01 all of the fluid model solutions have a sufficiently

linear profile to match the BGK-result; the NSeff model with second order velocity slip best

captures the amount of slip. For the KnB and the KnF cases, the non-linear velocity profile

at the wall is evident and is captured by both our NSeff models. The bulk of the flow is also

considered to be well described by our models, although there is a slight deviation for all

models for the KnF -case.

Figure 5 shows the KnE-case again for reference. In the KnG-case the slip amount

and the near wall curvature is captured by our models, while the conventional NS model

captures the bulk velocity profile best, in comparison to the BGK-results. In the KnH-

case the conventional NS model deviates quite severely from the BGK-results through the

channel; our first order slip model captures the amount of slip best, while our second order

slip model captures the bulk velocity profile the best.

4The second order velocity slip solution is the same as the first order slip solution, because the second

gradient of the velocity does not exist in this test case.
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Figure 4: Half-channel Couette flow velocity profiles using conventional Navier-Stokes (NS)

and our effective viscosity model (NSeff), using first and second order boundary condi-

tions (BC), compared with the BGK results of Sharipov [13]. The velocity profiles are

for KnE=0.01, KnB=0.04 and KnF =0.08, and y = 0 is the channel centre. The slip coeffi-

cients for our second order model are A2 = 0.05 and A3 = 0.63, and for our first order model

A1 = 1.

6.2 Poiseuille flow

We now calculate the velocity profiles and the mass flow rate for isothermal, fully-developed

Poiseuille flow in a planar-wall channel.
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Figure 5: Couette flow velocity profiles using conventional Navier-Stokes (NS), and our

effective viscosity model (NSeff), with first and second order boundary conditions (BC),

compared with the BGK results of Sharipov [13]; KnE=0.01, KnG=0.113 and KnH=0.339,

and y = 0 is the channel centre. The coefficients for our second order slip model are A2 = 0.05

and A3 = 0.63, and for our first order model A1 = 1.

6.2.1 Velocity profile results

In this case the solution to Eq. (18) using our NSeff model with first-order λeff-dependent

velocity slip is as follows:

Ux

U0
=

8

H2

[
G (H/2) + A1λ

H

2
− G(y)

]
, (25)

where

G(y) =

∫
y

K(y)
dy and U0 = −H2

8µ

dp

dx
. (26)
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The NSeff-solution with second-order λeff-dependent velocity slip is:

Ux

U0

=
8

H2

[
G (H/2) + A2λ

H

2
+ A3λ

2

[
K(H/2) − H

2
K ′(H/2)

]
− G(y)

]
, (27)

where

K ′(y) =
dK(y)

dy
. (28)

The solution of the conventional NS equation, with constant viscosity and first-order velocity

slip using the unconfined λ, is:

Ux

U0

= 1 − 4
( y

H

)2

+ 4C1
λ

H
, (29)

and the NS-solution with second-order velocity slip using the unconfined λ is:

Ux

U0
= 1 − 4

( y

H

)2

+ 4C1
λ

H
+ 8C2

(
λ

H

)2

. (30)

In Figs. 6 and 7 the results of these various NS-based models are shown together with

results from the BGK model presented by Sharipov [13], for various Kn as listed in the

captions.

In Fig. 6 it is seen for all Kn-cases that both our present models describe the bulk velocity

profiles and the near wall region quite well. For the KnB and KnF cases the conventional

NS equations with second order slip describe the bulk velocity profile well but do not capture

the same curvature as the BGK-model at the wall. The conventional NS with first order slip

deviates significantly in the KnB case and even more in the KnF , case as expected.

In Fig. 7 in the KnG case it is seen that only our two present models manage to match

the velocity profile of the BGK-model. In the KnH case it is only our present model using

second order slip that captures the same slip amount as the BGK-model. While none of the
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Figure 6: Half-channel Poiseuille flow velocity profiles using conventional NS and our effective

viscosity model NSeff, using first and second order boundary conditions (BC), compared with

the BGK results of Sharipov [13]. The velocity profiles are for KnE=0.01, KnB=0.04 and

KnF =0.08, and y = 0 is the channel centre. The slip coefficients for our second order model

are A2 = 0.05 and A3 = 0.63, and for our first order model A1 = 1.

NS-based models capture the same velocity profile as the BGK-model, our present models

have a higher amplitude of the profile relative to the conventional NS-models, which suggests

that our present models are in closer agreement with the BGK model for the KnH -case. In

the KnI -case only the results of our present model with second order slip are compared to

the BGK-model because the other models deviate to a too great extent. As can be seen, our

model captures a reasonable average velocity across the channel, although we still cannot

capture flow predictions correctly in the high Knudsen number range from about 0.903.
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Figure 7: Half-channel Poiseuille flow velocity profiles using conventional NS, and our effec-

tive viscosity model NSeff, with first and second order boundary conditions (BC), compared

with the BGK results of Sharipov [13]; KnG=0.113, KnH=0.339 and KnI=0.903, and y = 0

is the channel centre. The coefficients for our second order slip model are A2 = 0.05 and

A3 = 0.63, and for our first order model A1 = 1.

6.2.2 Mass flow results

We now compare the mass flow rates predicted by the present models with experimental

results by Ewart et al. [8] for various degrees of rarefaction. Ewart’s experimental measure-

ments are made for helium gas, driven by a pressure ratio of 5 between the inlet and the

outlet of the channel. Mass flow rates are obtained in the Kn-range of 0.03 to 50. The

experimental channel dimensions are: height, H = 9.38µm; width, W = 492µm; and length,

L = 9.39mm. Since this channel is wide compared to its height it is assumed that a com-
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parison with our model for just two planar walls is valid. However, according to Sharipov

[13] there is still an influence of the lateral walls, here separated by W ; the error due to

this influence can be taken into account by multiplying the mass predicted flow rate by

1-0.63H/W=0.99.

In order to compare our results with experiment, the velocity-dependent mass flow rate

is calculated using the following relation:

ṁ = ρ 〈Ux〉A =
p 〈Ux〉A

RT
, (31)

where A is the area of the cross section of the channel and

Ũx =
〈Ux〉
U0

=
2

H

∫ H/2

0

Ux

U0
dy, (32)

is the normalised average velocity across the channel width. We will here use the mass flow

definition of Eq. (31) with the averaged velocities of the four NS-based velocity expressions

given in Eqs. (29, 30, 25, 27) and normalise by the quantity

ṁ0 = − AH√
2RT

dp

dx
. (33)

We then obtain the normalised expression for the mass flow rate,

ṁ

ṁ0
=

U0

ṁ0

pA

RT
Ũx =

√
π

8

H

λ
Ũx =

δ

4
Ũx(δ), (34)

where the inverse rarefaction parameter is

δ =

√
π

2

H

λ
. (35)

The results of the mass flow rates of the NS and NSeff models are shown in Fig. 8, together

with the BGK results reported by Sharipov [13] and the experimental results of Ewart et
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al. [8]. In Table 1 we also list an approximate range of applicability, within the δ-inspection

range of 0.3 – 20, for the NS-based models and the BGK-model. These applicability ranges

are estimated by the ability of the different models to reproduce mass flow rates similar to

the experimental data within a reasonable range of the stated error bars.

Figure 8 shows that all of the models are asymptotic to the experimental data for low Kn

(i.e. high δ), which strengthens our presumption that the influence of the effective viscosity

and the effective mean free path should decay with decreasing degree of rarefaction. Our

NSeff-model using second-order velocity slip has a slightly low mass flow rate at about δ =

2, compared with the validation data of the BGK-method [13] and experimental data [8].

This result can also be seen by inspection of the velocity profile for the KnI -case of Fig. 7,

where the velocity profile is low in comparison to the BGK-model. In Fig. 8 it is only the

second order slip models of the NS-based models that capture the mass flow minimum, which

occurs for the conventional model at about δ = 2 and for the present model at δ=1. The

comparison data of the BGK-model and the experimental data have a minimum at δ = 1.2.

The conventional NS-model with second order slip has a mass flow rate that is unbounded

and therefore unphysical for low δ-values.

7 Discussion and conclusions

A velocity slip boundary condition is required in the application of the continuum Navier-

Stokes equations to micro-gas-flows in the slip regime in order to achieve better predictions.

In this paper we have presented a continuum fluid model for micro-gas-flows in the lower

transition-continuum regime by incorporating a molecular collision length description into
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Figure 8: Mass flow results from conventional NS and our effective viscosity model NSeff,

using first and second order boundary conditions (BC). The results are compared with BGK

solutions by Sharipov [13] and experimental results by Ewart et al. [8]. The height of the

error bars of the experimental data is set to 4.5% of the normalised mass flow rate values,

consistent with the data in [8]. The coefficients for our second order slip model are A2 = 0.05

and A3 = 0.63, and for our first order slip model A1 = 1.

the Navier-Stokes equations, as well as using first- and second-order velocity slip bound-

ary conditions. Our molecular description takes into account gas molecular collisions with

boundaries in the conventional definition of the mean free path, which therefore becomes a

geometry-dependent and “effective” parameter varying with distance from a solid surface.

This new definition of the effective mean free path yields an effective viscosity, and hence a

non-linear stress/strain-rate constitutive relationship in the Navier-Stokes framework. The
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Table 1: Applicability ranges of the tested NS-based models, estimated by comparing the

model predictions of mass flow rates with the experimental data of Ewart et al. [8].

Model

Approximate range of applicability

In terms of δ In terms of Kn

NSeff, second order BC 2—20 0.04—0.44

NSeff, first order BC 4—20 0.04—0.22

NS, second order BC a 3—20 0.04—0.30

NS, first order BC 4—15 0.04—0.06

BGK 0.3—2.95 0.04—2.95

aIt should be noted that the investigators Colin et al. [14] and Maurer et al. [15] found that for special

cases the applicability range of NS with second order boundary condition reached up to Kn = 0.25 and

Kn = 0.3 respectively.

velocity boundary conditions applied with our models then also become dependent on the

mean-free-path near the wall.

Although a simple model is preferred to describe flow characteristics for a wide range

of Kn, it was found by inspection of Couette flow and Poiseuille flow results that the con-

ventional Navier-Stokes equations are able to predict mass flows correctly up to about Kn

= 0.30. However, our effective mean-free-path-based model using first- and second order

velocity slip showed reasonably good results for velocity profiles and mass flow up to about

the same Kn.

It should be noted that the conventional Navier-Stokes equations can produce results

which fit the validation data better for higher Kn in the Poiseuille mass flow case. For
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example, Maurer et al. [15] present results where the conventional NS with second order

velocity slip captures the mass flow correctly up to about Kn = 1, for helium and nitrogen

gas using slip coefficients C1 = 1.2, 1.3, respectively, and C3 = 0.91, 0.87, respectively. In

this paper we use the coefficients of Cercignani, C1 = 1.4466 and C2 = 0.647 [7], for the

conventional Navier-Stokes equations since these coefficients present good velocity profile

results to about Kn = 0.01, but above this fail to capture the near wall velocity profiles

reported by the BGK-model of Sharipov [13].

For our new model we have applied coefficients that produce the best results for the

velocity profiles in Couette and Poiseuille flow, as well as the mass flow rates of Poiseuille

flow. For second order velocity slip, with our mean free path model, these coefficients are

found to be A2 = 0.05 and A3 = 0.63; for our first order boundary condition the best

coefficient is found to be A1 = 1. Generally, our model of a modified Navier-Stokes equation

with second order velocity slip produces better results than our model with only first order

velocity slip. The low value of A2 in our velocity slip formulations may be explained by

the fact that our model incorporates some surface effects through the mean free path, not

entirely through the slip coefficient as in Cercignani’s coefficients.

The Poiseuille mass flow rate results show that only by using second-order boundary

conditions can the mass flow minimum be captured. However, our model did not fully

capture the velocity profile produced by the BGK-model of Sharipov [13] at Kn = 0.339, and

we still cannot capture flow predictions correctly in the high Knudsen number range from

about 0.903. Corrections to our description of an effective mean-free-path may, however,

increase the range of applicability of our approach further into the continuum-transition

regime. For example, the present description of the effective mean free path requires that
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intermolecular collisions should be accounted for in the same way as molecular collisions

with the boundaries. However, intermolecular collisions cause a shortening of the free paths

of both of the involved molecules, which is why we will investigate further the relationship

between the unconfined mean free path and our geometry-dependent mean free path to

take these differences into account. In future work we also aim to validate the geometry-

dependence of the molecular mean-free-path in the presence of solid-boundaries by using

Molecular Dynamics simulations.
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