Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Compressive video sampling

Stankovic, V. and Stankovic, L. and Cheng, S. (2009) Compressive video sampling. In: Proceedings of the 16th IEEE international conference on Image processing. IEEE, pp. 3001-3004. ISBN 978-1-4244-5653-6

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to reduce the sampling rate of images/video. The key idea is to exploit the intra- and inter-frame correlation to improve signal recovery algorithms. The image is split into non-overlapping blocks of fixed size, which are independently compressively sampled exploiting sparsity of natural scenes in the Discrete Cosine Transform (DCT) domain. At the decoder, each block is recovered using useful information extracted from the recovery of a neighboring block. In the case of video, a previous frame is used to help recovery of consecutive frames. The iterative algorithm for signal recovery with side information that extends the standard orthogonal matching pursuit (OMP) algorithm is employed. Simulation results are given for Magnetic Resonance Imaging (MRI) and video sequences to illustrate advantages of the proposed solution compared to the case when side information is not used.