Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Compressive sampling of binary images

Stankovic, V. and Stankovic, L. and Cheng, S. (2008) Compressive sampling of binary images. In: Congress on Image and Signal Processing, 2008. CISP '08. IEEE, pp. 7-11. ISBN 978-0-7695-3119-9

Full text not available in this repository. Request a copy from the Strathclyde author


Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to reduce the sampling rate of binary images. A system is proposed whereby the image is split into non-overlapping blocks of equal size and compressive sampling is performed on selected blocks only using the orthogonal matching pursuit technique. The remaining blocks are sampled fully. This way, the complexity and the required sampling time is reduced since the orthogonal matching pursuit operates on a smaller number of samples, and at the same time local sparsity within an image is exploited. Our simulation results show more than 20% saving in acquisition for several binary images.