Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Fast algorithm for distortion-based error protection of embedded image codes

Hamzaoui, R. and Stankovic, Vladimir M. and Xiong, Z. (2005) Fast algorithm for distortion-based error protection of embedded image codes. IEEE Transactions on Image Processing, 14 (10). pp. 1417-1421. ISSN 1057-7149

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider a joint source-channel coding system that protects an embedded bitstream using a finite family of channel codes with error detection and error correction capability. The performance of this system may be measured by the expected distortion or by the expected number of correctly decoded source bits. Whereas a rate-based optimal solution can be found in linear time, the computation of a distortion-based optimal solution is prohibitive. Under the assumption of the convexity of the operational distortion-rate function of the source coder, we give a lower bound on the expected distortion of a distortion-based optimal solution that depends only on a rate-based optimal solution. Then, we propose a local search (LS) algorithm that starts from a rate-based optimal solution and converges in linear time to a local minimum of the expected distortion. Experimental results for a binary symmetric channel show that our LS algorithm is near optimal, whereas its complexity is much lower than that of the previous best solution.