Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Automatic subdivision and refinement of large components for rapid prototyping production

Medellin, H. and Lim, T.C. and Corney, J.R. and Ritchie, J.M. and Davies, J.B.C. (2007) Automatic subdivision and refinement of large components for rapid prototyping production. Journal of Computing and Information Science in Engineering, 7 (3). pp. 249-258. ISSN 1530-9827

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The aim of the work presented in this paper is to enable production of large, complex components on rapid prototyping machines whose build volume is less than the size of the desired component. Such large components can be produced as fabrications if a suitable subdivision can be generated. In general, any component can be subdivided into smaller parts by an array of orthogonal planes, but the resulting shapes could have geometries that are difficult to produce accurately on many rapid prototyping systems. The system presented here creates a decomposition designed for both rapid prototyping and assembly. The proposed method considers potential manufacturing problems, and modifies the boundaries of individual parts, where necessary. Additionally, the system also generates complementary male/female (i.e., matching protrusion/depression) assembly features at the interface between the component parts in order to improve the integrity and assemblability of the final component. To prove the functionality of the system, three components are analyzed at the end of this paper.