Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Autonomous and decentralized mission planning for clusters of UUVs

Giovanini, L. and Balderud, J. and Katebi, M.R. (2007) Autonomous and decentralized mission planning for clusters of UUVs. International Journal of Control, 80 (7). pp. 1169-1179. ISSN 0020-7179

Full text not available in this repository. Request a copy from the Strathclyde author


This paper proposes an algorithm for autonomous strategic mission planning of missions where multiple unhabitated underwater vehicles (UUVs) cooperate in order to solve one or more mission tasks. Missions of this type include multi-agent reconnaissance missions and multi-agent mine sweeping missions. The mission planning problem is posed as a receding horizon mixed–integer constrained quadratic optimal control problem. This problem is subsequently partitioned into smaller subproblems and solved in a parallel and decentralized manner using a distributed Nash-based game approach. The paper presents the development of the proposed algorithm and discusses its properties. An application example is used to further demonstrate the main characteristics of the proposed method.