
1

Restoration of Star-Field Images
Using High-Level Languages and

Core Libraries

Robin Bruce, Caroline Ruet, Dr Malachy
Devlin, Prof Stephen Marshall

28/03/2007 – Robin Bruce MRSC 2007 2

Overview

• Introduction
• MED – SA algorithm
• ANSI C implementation
• DIME-C implementation
• Comparison software/hardware
• Application
• Conclusion & further work

28/03/2007 – Robin Bruce MRSC 2007 3

Introduction

• There is a need for objective research in
reconfigurable computing (RC)
• Don’t just pick battles you know you’ll win

• Need to evaluate effectiveness of RC as a
general purpose solution
• How does it work on arbitrarily-selected problems?

• There is a range of measures that we can
apply to determine the performance
improvement

28/03/2007 – Robin Bruce MRSC 2007 4

Hardware Comparisons

• Can Compare FPGAs to:

• Digital Signal Processors (DSPs)
• Application-Specific Integrated Circuits

(ASICs)
• Microprocessors
• Other, could include

• Graphics Processing Units (GPUs)
• Cell BE Processor
• Clearspeed CX600

28/03/2007 – Robin Bruce MRSC 2007 5

Hardware Comparisons II

• Can compare with respect to:
• Raw performance
• Power consumption
• Unit cost
• Board footprint
• Non-Recurring Engineering Cost (NRE)
• Design time and Design cost

• The key metrics for a particular application
may also include ratios of these metrics, e.g.
performance/power, or performance/unit
cost.

28/03/2007 – Robin Bruce MRSC 2007 6

Application Choice

• Implementation of the Minimum Entropy
Deconvolution algorithm using Simulated
Annealing method: representative of a
computationally intense image-processing
application

• Chosen Fairly Arbitrarily
• Only knew that it was a compute-intensive algorithm
• Did not know how suitable the algorithm was for

implementation on RCs before committing to it

28/03/2007 – Robin Bruce MRSC 2007 7

Chosen Comparison

• Comparing a 90nm-process commodity
microprocessor with a platform based around
a 90nm-process FPGA
• 3.2 GHz Intel Pentium D processor with 2 GB of

DRAM, with the gcc compiler
• Nallatech H101-PCIXM card, with the DIME-C compiler

• Xilinx Virtex-4 LX160 FPGA, 512 MB of DRAM and 4
banks of 200MHz, 4 MB SRAM.

• Focussing on design time and raw
performance improvement.

28/03/2007 – Robin Bruce MRSC 2007 8

MED – SA algorithm
• Restore blurred images
• MED algorithm with SA used to converge

towards the globally-optimum solution
• y = x ٭ h + n

• y: observed image, x: original image, h: Gaussian filter,
n: white Gaussian noise

• Estimate x from y

• Computation of 2 gradients: ∆x=∂E/∂x, ∆d=∂E/∂d

Estimated image Estimated filter Observed image

* =

28/03/2007 – Robin Bruce MRSC 2007 9

MED – SA algorithm

• Assumptions

• PSF is a Gaussian function

• m1, m2 designates the size of the PSF
• d corresponds to the width of the PSF (blurring level)
• γ is a constant to normalise the Gaussian function:

),0[
,0

2,1,0,1,22,1,exp)(

2
2

2
1

∞∈

⎪
⎩

⎪
⎨

⎧
−−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−=

d
otherwise

mmfor
d

mm
dh γ

∑ ∑
+∞

−∞=

+∞

−∞=

=
1 2

1)(
m m

dh

28/03/2007 – Robin Bruce MRSC 2007 10

MED – SA algorithm

• Algorithm – minimising the Energy E

• Step 0: Set p=0 and initialise xp, Tp, dp and α, β, λ

• Step 1: Compute the energy Ep(xp, h(dp))

() []

)(

),(),(),(
),(

),(

1

))(,(
1 2

1 2

1 2 2
212121

21
4

2

21
2

xsizeof

kkykkhkkx
kkx

kkx

dhxE
k k

k k

k k ∑∑∑∑
∑∑

−∗+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

=

λλ

28/03/2007 – Robin Bruce MRSC 2007 11

MED – SA algorithm
• Step 2: Select a candidate solution

x’p+1 = xp - α∆xp

d’p+1 = dp - β∆dp

),(
),(),(

),(
2

),(

),(

),(1
),(

),(

),(4
),(

2211
2121

2211

21
4

21
2

21
2

21
4

21
2

21
21

1 2 1 2

1 2

1 2

1 2

1 2

nknkh
kkymmh

mkmkx

kkx

kkx

nnx
kkx

kkx

nnx
nnx

E

p
k k m m p

p

k k
p

k k
p

p

k k
p

k k
p

p
p

−−⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⋅

−−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⋅=
∂

∂

∑∑∑∑

∑∑
∑∑

∑∑
∑∑

λ

28/03/2007 – Robin Bruce MRSC 2007 12

MED – SA algorithm
• Step 3: Compute the energy E’p+1(x’p+1, h(d’p+1))

∆E = E’p+1 - Ep

• Step 4:

If: where r is a random number Є [0,1]

Then:

Else:
where f(.) is a decreasing function

• Step 5: p = p + 1, #_iterations = #_iterations – 1

• Step 6: Output xp+1 is the estimation image

r
T
E

p
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−exp

pppppp TTandddxx === +++++ 11111 ','

)(, 111 pppppp TfTandddxx === +++

28/03/2007 – Robin Bruce MRSC 2007 13

ANSI C Implementation
• Algorithm organisation

• The C program is not initially optimised
Functional Hierarchy

28/03/2007 – Robin Bruce MRSC 2007 14

• Code modification

• Loop Fusion

• Pipelining

• Spatial parallelism

• Resource optimisation

DIME-C Implementation

5/9

Spatial parallelism

Pipelining

28/03/2007 – Robin Bruce MRSC 2007 15

Example Optimisation

• Filter Application

• number of cycles: ≈ 480,111
(before optimisation: 12,000,133)

• number of slices: = 27733
(before optimisation: 3184)

Graphical representations of the filter implementation

28/03/2007 – Robin Bruce MRSC 2007 16

Core Libraries

• Made use of single-precision mathematical
operators that are integrated into DIME-C

• Project depended on random number
generator and exponential function
• Not in compute intensive region of algorithm
• Functions acted as an enabler to full algorithm

implementation

• Hear more about Core Libraries from me later
today

28/03/2007 – Robin Bruce MRSC 2007 17

Implementation Procedure

1. Created a DIME-C project using the original source from the ANSI C
project
2. Adapted source to allow compilation in both DIME-C and ANSI C
environments

3. Took advantage of the most obvious pipelining opportunities to
create 1st FPGA implementation

4. Examining the source code and the output of DIME-C, created
an equation that expressed the runtime of the algorithm in cycles, as a
function of the parameters of the algorithm, divided into key sections.

5. Determined for a typical set of algorithm parameters the section
that took up the majority of the runtime, and optimised the DIME-C for
this section to create the 2nd FPGA implementation

6. Repeated sections 4&5 to produce the 3rd FPGA
implementation,

28/03/2007 – Robin Bruce MRSC 2007 18

Time to Solution

• Developing the initial ANSI C Implementation
• 125 Person Hours

• Developing the DIME-C Implementation
• 35 Person Hours

• Most time spent developing the software

28/03/2007 – Robin Bruce MRSC 2007 19

Software versus Hardware

Software 1st FPGA 2nd FPGA 3rd FPGA 4th FPGA

Cycles 7.98×1010 8.72×1010 4.30×1010 2.59×1010

Time in Seconds 216 798.00 87.24 42.96 25.92

Speedup vs. Software 1 0.27 2.48 5.03 8.33

% Contribution of:

De_Dx 5.02 45.94 93.29 88.91

Filter 94.74 51.86 2.24 3.71

Rest of Algorithm 0.24 2.20 4.47 7.38

• Several generations of the FPGA
implementation compared to software

• DeDx remains the focus of a 5th version

28/03/2007 – Robin Bruce MRSC 2007 20

Example Results

• Simulation of real Black and White pictures
• 200 x 200 image
• 7 x 7 filter

Observed image:
blurred and noisy

Restored image
300 iterations

Original image

28/03/2007 – Robin Bruce MRSC 2007 21

Conclusion

• Good performance: speedup ≈ 8
• Design productivity was high using DIME-C
• Increased performance and productivity

possible using libraries of low-level IP cores

• 100-Page report available for those who want
to know more

28/03/2007 – Robin Bruce MRSC 2007 22

Microprocessor Speedups

28/03/2007 – Robin Bruce MRSC 2007 23

Speedup in Context

• Moore’s Law Tells us Performance Doubles
Every 18 months
• Does it really?

• Hennessey & Patterson (2007) tell us that
processor performance improved by 52% a
year until 2002.

• Since 2002 it’s been running at around 20% a
year

28/03/2007 – Robin Bruce MRSC 2007 24

Speedup in Context II

• If an FPGA gives you an 8x speedup now,
how many years would it take for the
microprocessor to catch up?

• Assumption Alert!
• Benchmark used to evaluate processors gives a good

idea of how our application would perform
• Comparing two best-effort implementations on the

same process node, FPGA and uP

• 8x Speedup would take 11-12 years to attain
at 20% per annum improvements

28/03/2007 – Robin Bruce MRSC 2007 25

The Magic Numbers

• How much is being 12 years ahead of the
competition worth?

• Reconfigurable Computing must offer (insert
magic number) X improvement over
conventional computing to see widespread
adoption
• Such a blanket statement is meaningless

• Depends on the economics of the application

28/03/2007 – Robin Bruce MRSC 2007 26

Acknowledgements

• Research is sponsored by Nallatech
• Institute for System Level Integration made

everything possible
• Caroline did all the hard work

28/03/2007 – Robin Bruce MRSC 2007 27

Quote

• Alan Perlis - When someone says "I want a
programming language in which I need only
say what I wish done," give him a lollipop.

	Restoration of Star-Field Images Using High-Level Languages and Core Libraries
	Overview
	Introduction
	Hardware Comparisons
	Hardware Comparisons II
	Application Choice
	Chosen Comparison
	MED – SA algorithm
	MED – SA algorithm
	MED – SA algorithm
	MED – SA algorithm
	MED – SA algorithm
	ANSI C Implementation
	DIME-C Implementation
	Example Optimisation
	Core Libraries
	Implementation Procedure	
	Time to Solution
	Software versus Hardware
	Example Results
	Conclusion
	Microprocessor Speedups
	Speedup in Context
	Speedup in Context II
	The Magic Numbers
	Acknowledgements
	Quote

