
RESTORATION OF STAR-FIELD IMAGES USING HIGH-LEVEL LANGUAGES AND
CORE LIBRARIES

 Robin Bruce – Institute for System Level Integration, Alba Campus, Livingston, Scotland. robin.bruce@sli-institute.ac.uk

Tel: +44 (0) 117 377 7144
Caroline Ruet – L’Institut National des Sciences Appliquées, Rennes, France. caroline.ruet@ens.insa-rennes.fr

Dr Malachy Devlin – Chief Technology Officer, Nallatech, Glasgow, Scotland. m.devlin@nallatech.com
Prof. Stephen Marshall – University of Strathclyde, Glasgow, Scotland. s.marshall@eee.strath.ac.uk

1. INTRODUCTION

Research into the use of FPGAs in Image Processing began in earnest at the beginning of the 1990s.
Since then, many thousands of publications have pointed to the computational capabilities of FPGAs.
During this time, FPGAs have seen the application space to which they are applicable grow in tandem
with their logic densities. When investigating a particular application, researchers compare FPGAs with
alternative technologies such as Digital Signal Processors (DSPs), Application-Specific Integrated Cir-
cuits (ASICs), microprocessors and vector processors. The metrics for comparison depend on the needs
of the application, and include such measurements as: raw performance, power consumption, unit cost,
board footprint, non-recurring engineering cost, design time and design cost. The key metrics for a par-
ticular application may also include ratios of these metrics, e.g. power/performance, or performance/unit
cost. The work detailed in this paper compares a 90nm-process commodity microprocessor with a plat-
form based around a 90nm-process FPGA, focussing on design time and raw performance.

The application chosen for implementation was a minimum entropy restoration of star-field images
(see [1] for an introduction), with simulated annealing used to converge towards the globally-optimum
solution. This application was not chosen in the belief that it would particularly suit one technology over
another, but was instead selected as being representative of a computationally intense image-processing
application.

2. IMPLEMENTATION

The implementation of the algorithm took place in two stages, and involved two of the authors. One au-
thor took the role of application specialist, while the other took the role of reconfigurable-computing
specialist.

The software platform was a 3.2 GHz Intel Pentium D processor with 2 GB of DRAM, with the
gcc compiler. The targeted FPGA platform was a Nallatech H101-PCIXM card, with the DIME-C com-
piler. The H101-PCIXM card has a Xilinx Virtex-5 LX100 FPGA, 512 MB of DRAM and 4 banks of
200MHz, 4 MB SRAM.

In the first stage of implementation, the application specialist developed the algorithm from the-
ory to implementation in ANSI C on a commodity microprocessor. This stage represented the majority
of the time spent in the project, around 100 person-hours. The application specialist carried out this
work, without any significant input from the reconfigurable-computing specialist. Once the algorithm
was functioning satisfactorily in software, the second stage began.

In the second stage of the algorithm, the application specialist and the RC specialist worked to-
gether to optimise the algorithm, to migrate it to the DIME-C environment, and to characterise its per-
formance. This process took approximately 25 person-hours. The ANSI C implementation was optimised
for performance in order to make for the fairest comparison. The software performance was improved by
several orders of magnitude during this time; otherwise, the software-hardware comparison would have
been more weighted in favour of the FPGA.

mailto:robin.bruce@sli-institute.ac.uk
mailto:caroline.ruet@ens.insa-rennes.fr
mailto:m.devlin@nallatech.com
mailto:s.marshall@eee.strath.ac.uk

A typical procedure for the porting of algorithms to software is to first profile the software-
implemented algorithm, then implement on the FPGA the functions that represent the majority of the cal-
culation time. There are disadvantages to this approach. It neglects to take into account the data transfers
that are necessary between the RC platform and the microprocessor-based system before and after each
function call. When factored in, these data transfers can negate any performance improvement in the
hardware-implemented function. The approach taken here was to implement the entire algorithm on the
FPGA, so that the data transfer time is negligible in comparison to the compute time. This means that all
improvements to the computation time of a section of the algorithm translate into a measured perform-
ance improvement. The full implementation of the algorithm would have been impossible without access
to a core library of mathematical functions, to provide the exponential function and pseudo-random num-
ber generator necessary for simulated annealing. The implementation process consisted of the following
steps:

1. Created a DIME-C project using the original source from the ANSI C project
2. Adapted source to allow compilation in both DIME-C and ANSI C environments
3. Took advantage of the most obvious pipelining opportunities to create 1st FPGA implementation
4. Examining the source code and the output of DIME-C, created an equation that expressed the runtime of

the algorithm in cycles, as a function of the parameters of the algorithm, divided into key sections.
5. Determined for a typical set of algorithm parameters the section that took up the majority of the runtime,

and optimised the DIME-C for this section to create the 2nd FPGA implementation
6. Repeated sections 4&5 to produce the 3rd FPGA implementation,

The performance improvements with each revision of the FPGA-implemented algorithm are shown be-
low. Data transfer times were negligible and did not contribute to the final result:

 1st FPGA 2nd FPGA 3rd FPGA Software
Cycles 81,180,026,000 10,104,026,000 5,725,226,000
Time (seconds) 811.80026 101.04026 57.25 216
Speedup vs. Software 0.266075303 2.13776172 3.77 1
% Contribution of:
 De_Dx 6.65 53.44 94.32
 Filter 93.13 44.77 2.54
 Rest of Algorithm 0.22 1.78 3.14

As the filter section was improved, the performance of the algorithm improved. The evolution of the
characteristic equation can be seen below. It should be obvious from the table that the algorithm section
De_Dx would be the focus of a 4th revision.

iternnlcnFilterFPGA _)12()1012(3 121 ⋅+⋅⋅+⋅= ⋅

iternnnlcFilterFPGA _)151
2

3()
2

(21
2 ⋅+⋅

⋅
=

iterncnlcFilterFPGA _)12((3 23 ⋅⋅++⋅⋅=

REFERENCES

Wu H, Barba J, Minimum entropy restoration of star field images. Address: Systems, Man and Cybernetics, Part B, IEEE
Transactions on, Vol. 28, No. 2. (1998), pp. 227-231.

	RESTORATION OF STAR-FIELD IMAGES USING HIGH-LEVEL LANGUAGES AND CORE LIBRARIES
	1. INTRODUCTION
	2. IMPLEMENTATION
	REFERENCES

