Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Uncertainty propagation through radial basis function networks part II: classification networks

Pierce, S.G. and Worden, K. and Manson, G. (2005) Uncertainty propagation through radial basis function networks part II: classification networks. In: UNSPECIFIED.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Radial basis function neural networks were trained using both partially supervised and fully supervised training techniques on a simple two-dimensional Gaussian data set. Forward uncertainty propagation through these networks was assessed using a technique of nested interval sets to form an information-gap model of classification performance of the networks. We demonstrate that the interval technique allows both the quantification of worst case and best case error performance of an individual network; and additionally provides an effective tool for optimal network selection in the presence of uncertainty.