
This version is available at https://strathprints.strath.ac.uk/11518/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Electrical System Design for the Proposed 1GW Beatrice Offshore Wind Farm

Dr. Graham Ault
Outline

- Background
- Drivers
- Electrical system conceptual designs
- Design issues
- Design approach
- Conclusions
Beatrice Offshore Wind Farm Background

• Demonstrator programme will install 2 x 5MW RePower wind turbines
• Existing platforms to be used to connect demonstrator wind turbines and infrastructure can be used for full scale 1GW wind farm
• Research programme includes:
 – Environmental
 – Wind turbines and structures
 – Operation and maintenance
 – Electrical
Specific Drivers for Beatrice Wind Farm

- Existing offshore infrastructure
- Desire to go deeper offshore
- Philosophy of very large-scale harnessing of energy (cf. oil & gas) and renewables
- UK renewables incentives
- EU, DTI and Scottish Executive support
Beatrice 2 x 5MW Demonstrator Wind Farm
Offshore Collector System
Conceptual Designs
‘Radial’ clustered wind turbines connected to single hub

- Simple control
- Relatively inexpensive
- Poorer reliability
- Switchgear more straightforward
‘Single sided ring’ clustered wind turbines connected to single hub

- Ring operated in open configuration
- More expense in cabling (run length plus loss of tapering)
- Greater security
‘Double sided ring’ clustered wind turbines connected to single hub

- Ring operated in open configuration
- More expense in cabling (possibility of partially rating cables)
- Greater security
- Upper limit on cable ratings a possible constraint
‘Star’ clustered wind turbines connected to single hub

- Reduced cables ratings (and expense)
- Good security
- Good voltage regulation
- Switchgear arrangement more complex and expensive
‘Multiple hub’ arrangement with radial clustered wind turbines

- Lower losses through higher voltage collection
- More expensive EHV cables?
- Multiple hubs provides greater security but more cost
‘Multiple hub ring’ arrangement with radial clustered wind turbines

- Enhanced collector system security
- Greater operational flexibility
- More expense in multiple hubs and higher voltage collection
- Tried and tested in onshore distribution and sub-transmission
DC collector system arrangement with radial clustered wind turbines

- Fits with future fully converted turbine generators
- Less expense in HVDC transmission to shore
- Costs within collector system unclear?
- More costly DC switchgear
Electrical Collector System Design Issues
Beatrice 1GW Wind Farm Design Issues

- Turbine generator technology: FSIG, DFIG, Fully converted
- Number of turbines per cluster and cluster formation
- Electrical cabling: length, runs, capacity, voltage level
- Hub design: number, plant required
- Reactive compensation requirement
- Operational Regime
- Protection and control
- Plant physical characteristics
Beatrice 1GW Wind Farm Design Criteria

- Collector system security
- Power flows, voltage regulation and losses
- Fault currents
- Stability
- Power quality
- Operational restrictions
- Economics
Optimal Network Planning: Demand

1. Area Demand Assessment

2. Substation Location & Rating

3. Cable Routing & Rating
Optimal Network Planning: Generation

1. Area Resource Assessment

2. Substation Location & Rating

3. Cable Routing & Rating
Optimal Collector System Planning

- Distribution networks main drivers are demand security and adequacy
- Offshore collector system drivers are different:
 - Economy
 - Availability
- Resource assessment is very different from load demand
- Unit costs for substations and circuits are different
Conclusions

- Downvind demonstrator programme and research programme underway
- General electrical collector system conceptual designs identified
- Design optimisation for 1GW wind farm in formulation
- Power system analysis programme now initiated
- Initial results show serious challenges for 1GW collector system