Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation

Vrcelj, R.M. and Clark, Nathan I.B. and Kennedy, A.R. and Sheen, D.B. and Shepherd, E.E.A. and Sherwood, J.N. (2003) Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation. Journal of Pharmaceutical Sciences, 92 (10). pp. 2069-2073. ISSN 0022-3549

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This work reports on the crystal structures of two dioxane solvates of paracetamol that are true polymorphs. The high temperature phase is an orthorhombic form, space group Pbca, Z = 8, a = 12.6078(3) î.., b = 12.1129(2) î.., c = 13.4138(3) î.., V = 2048.52(7) î..3, (at 295 K) and the low temperature form is monoclinic, space group P21/c, Z = 4, a = 12.325(6) î.., b = 11.965(4) î.., c = 13.384(6) î.., = 92.01°, V = 1972.6(14)î..3 (at 123 K). The structures of these polymorphs are described as is the interrelationship between the two structures. In addition to the structural interrelationship, it is shown that the two forms undergo a reversible phase transformation. Desolvation of either form generates the stable monoclinic phase of paracetamol.