Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Chiral analysis of methylphenidate and dextromoramide by capillary electrophoresis

Denk, Oliver M. and Watson, D.G. and Skellern, G.G. (2001) Chiral analysis of methylphenidate and dextromoramide by capillary electrophoresis. Journal of chromatography. B, Biomedical sciences and applications, 761 (1). pp. 61-68. ISSN 1387-2273

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Capillary electrophoretic methods have been developed to separate the enantiomers of methylphenidate (MPH) and dextromoramide. For MPH separation was achieved with heptakis (2,6-di-O-methyl)-beta -cyclodextrin (DMCD) as chiral selector in a 100 mM phosphoric acid buffer adjusted to pH 3.0 with triethanolamine. Commercial samples Of D,L-erytho-MPH HCl and D,L-threo-MPH HCl were analysed using the method. There was no evidence of the presence of D,L-threo-MPH HCl in D,L-etytho-MPH HCl and vice versa. The ratio of the enantiomers was determined for each diasteroisomer. Hydroxypropyl-beta -cyclodextrin was the chiral selector of choice for the chiral separation of the enantiomers of moramide. The separation which gave a resolution of about 3.5 was achieved in 4 min using only a 6 cm of length of capillary. In a sample of dextro-R-moramide tartrate only a small quantity (4.9% w/w) of levo-S-moramide was detected with this method.