Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells

Long, J.S.L. and Pyne, N.J. and Pyne, S. (2006) The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins and Other Lipid Mediators, 79 (3-4). pp. 278-286. ISSN 1098-8823

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Both acute and chronic hypoxia had no effect on S1P1, S1P3 or LPA1 receptor transcript expression in human pulmonary smooth muscle cells. However, acute hypoxia increased sphingosine kinase SK1/2 and LPP1 mRNA transcript levels, while chronic hypoxia increased SK1 mRNA transcript alone. Acute hypoxia had no effect on S1P-, PDGF- or phorbol ester (PMA)-stimulated activation of ERK-1/2, but increased the ability of S1P to activate p38 MAPK. Chronic hypoxia increased the ability of S1P to stimulate the phosphorylation of ERK-1/2. Therefore, we have demonstrated for the first time that hypoxia can lead to marked changes in the expression of genes involved in S1P production and may modify post S1P receptor signal transduction pathways.