
This version is available at https://strathprints.strath.ac.uk/10286/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
The structure of lithium garnets: cation disorder and clustering in a new family of fast Li⁺ conductors†

Edmund J. Cussen

Received (in Cambridge, UK) 17th October 2005, Accepted 2nd November 2005
First published as an Advance Article on the web 25th November 2005
DOI: 10.1039/b514640b

The structure of the fast lithium-ion conducting garnets Li₃La₃M₂O₁₂ (M = Ta, Nb) reveals Li⁺ on both tetrahedral and octahedral sites and suggests that the latter are responsible for the observed Li⁺ mobility via a clustering mechanism.

Lithium garnets have recently been reported as potential solid electrolytes for operation in an all solid-state rechargeable lithium battery.2–6 These garnets, Li₃La₃M₂O₁₂ (M = Ta, Nb), show activated lithium ion mobility which rivals that observed in the best crystalline Li⁺ conductors and, most importantly, the garnets are chemically stable when exposed to moisture, air and metallic lithium. Lithium-containing garnets have been known for over 35 years but are unusual in oxide environments of the garnet structure, but are unusual in lacking systematic absences associated with the space group Ia3d. We found no Bragg intensity which required a reduction in the space group symmetry. Initial attempts to fit the data collected from Li₃La₃Ta₂O₁₂ using a structural model in which the lithium occupied ½ of the octahedrally coordinated (48f) site. However this refinement failed to converge and resulted in a poor intensity match and the large residual fit parameters shown in Table 1.

Table 1 The fit parameters, lattice energies and global instability indices of a range of structural models for Li₃La₃M₂O₁₂ at room temperature

<table>
<thead>
<tr>
<th>Li site occupancies</th>
<th>Oh</th>
<th>Td</th>
<th>M</th>
<th>R_wp (%)</th>
<th>χ²</th>
<th>Energy/EVb</th>
<th>GII/v.u.³</th>
</tr>
</thead>
<tbody>
<tr>
<td>½/½</td>
<td></td>
<td></td>
<td>Ta</td>
<td>3.13³</td>
<td>6.937³</td>
<td>—</td>
<td>0.171</td>
</tr>
<tr>
<td>½/½</td>
<td></td>
<td></td>
<td>Nb</td>
<td>4.44²</td>
<td>15.69²</td>
<td>5 035.6</td>
<td>0.156</td>
</tr>
<tr>
<td>½/½</td>
<td></td>
<td></td>
<td>Ta</td>
<td>2.17</td>
<td>3.593</td>
<td>—</td>
<td>0.151</td>
</tr>
<tr>
<td>½/½</td>
<td></td>
<td></td>
<td>Nb</td>
<td>3.07</td>
<td>7.507</td>
<td>5 137.0</td>
<td>0.138</td>
</tr>
<tr>
<td>0.433(1) 0.802(4)</td>
<td></td>
<td></td>
<td>Ta</td>
<td>1.27</td>
<td>2.626</td>
<td>—</td>
<td>0.139</td>
</tr>
<tr>
<td>0.414(1) 0.836(4)</td>
<td></td>
<td></td>
<td>Nb</td>
<td>2.35</td>
<td>4.376</td>
<td>5 119.2</td>
<td>0.129</td>
</tr>
</tbody>
</table>


d Failed to reach convergence. ⁵ Calculated using GULP. No suitable potential is available for Ta°. ³ Global Instability Index calculated using Soft BVS. v.u. = valence units.

Fig. 1 (a) The [La₃M₂O₁₂]³⁻ garnet framework showing MO₆ octahedral units and Ln⁴⁺ cations and potential lithium sites with (b) trigonal prismatic, (c) octahedral and (d) tetrahedral coordination.

The School of Chemistry, The University of Nottingham, Nottingham, UK NG7 2RD. E-mail: Edmund.Cussen@Nottingham.ac.uk; Fax: +44 115 951 3563; Tel: +44 115 951 3503
† Electronic supplementary information (ESI) available: Full details of the synthetic methods, lattice energy calculations, crystal structures and Rietveld refinements. See DOI: 10.1039/b514640b
with the constraint that the unit cell contained 5Li⁺ per formula unit. The lithium on the 48g site refined to give highly anisotropic displacement parameters indicating that the scattering intensity was disordered along a line between the opposing faces of the octahedron which are shared with neighboring tetrahedral LiO₄ units. Therefore the refinement was modified to allow the octahedrally co-ordinated lithium to move off the 48g site and the final refinement employed a model in which the octahedral lithium was disordered with the majority of the lithium displaced away from one shared polyhedral face and towards the opposite linking face. The structural parameters are summarised in Table 2 and a fitted diffraction pattern is shown in Fig. 2.

The lithium occupations of the tetrahedra (0.802(4)) and octahedra (0.43(2)) imply that face-sharing octahedral and tetrahedral pairs can be occupied simultaneously giving a mean Li−⋅Li separation of only 1.9626(3) Å. The majority of lithium on the octahedral site is displaced thus splitting the Li−⋅Li distance to 1.500(15) and 2.381(11) Å. The latter is a physically acceptable value but the former, and the mean value, are clearly too short. The average structure does not exist within the material over the length scale of a unit cell but instead represents clustering of regions of tetrahedral and octahedral Li, reminiscent of the structure of Lisicon. The size of such domains will be limited by the charge separation associated with the formation of (Td) [Li₃La₃Ta₂O₁₂]²⁻ and (Oh) [Li₆La₃Ta₂O₁₂]³⁺ regions. The surface of a domain containing lithium on the octahedral site must necessarily share faces with occupied tetrahedral sites in a neighbouring domain and the electrostatic repulsion associated with such a short distance is reduced by the observed displacement of some of the octahedral lithium away from one of the shared faces. The LiO₆ octahedra are linked by shared edges which have irregular Li−⋅Li distances. The shortest cation separations are associated with the longest oxide–oxide distances i.e. when the Li⁺ cations are closest the anions provide the least effective screening, as shown in Fig. 3. This suggests that Li⁺ hopping between these sites will be relatively facile. The connectivity between these sites gives rise to a 3-dimensionally connected Li⁺ pathway. Both the elevated temperature data sets and data collected from Li₃La₃Nb₂O₁₂ at room temperature showed the structures were not significantly different and the occupancies of the octahedral and tetrahedral Li⁺ sites all refined to similar values in each data set.

The refined structures were used as input for a series of lattice energy calculations using the General Utility Lattice Program (GULP) and literature values for interatomic potentials. The minimised lattice energies, collected in Table 1, show that disorder of Li⁺ over both tetrahedral and octahedral sites increases the lattice stability by ca. 1.7% compared to a structure which accommodates lithium wholly on the octahedral sites. The observation of mixed Li⁺ coordination environments and clustering shows that the lithium garnets are more complex than previously described. The structural data suggest that the Li⁺ mobility arises from the octahedral sites which contain a minority lithium occupancy.

The author is grateful to The Royal Society for the provision of a University Research Fellowship and to Dr R. Smith at RAL for assistance with the neutron scattering experiments and Dr J. D. Gale for providing the GULP code.

Notes and references