Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation

Wark, A.W. and Pugh, D. and Berlouis, L.E.A. and Cruickshank, F.R. and Brevet, P.F. (2001) Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation. Journal of Applied Physics, 89 (1). pp. 306-310. ISSN 0021-8979

[img]
Preview
PDF (1.1330246)
1.1330246.pdf - Final Published Version

Download (231kB) | Preview

Abstract

The second order nonlinear coefficient (d36) of the narrow band gap semiconductor, mercury cadmium telluride (MCT), is measured. Because MCT is strongly absorbing at a 1.06 μm wavelength, the measurement was performed by comparing the second harmonic intensity reflected from the material surface to the second harmonic intensity measured for a quartz sample in transmission. The analysis depends on the derivation of comparable expressions for the reflected and transmitted intensities. Using this approach a value of d36=350±40 pm/V is obtained, a value much larger than those reported for similar zinc-blende type materials. The large magnitude of the MCT d36 is attributed to an electronic resonance enhancement.