Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Lyophilised wafers as a drug delivery system for wound healing containing methyl cellulose as a viscosity modifier

Matthews, K.H. and Stevens, H. and Aufret, A. and Humphrey, M.J. and Eccleston, G.M. (2005) Lyophilised wafers as a drug delivery system for wound healing containing methyl cellulose as a viscosity modifier. International Journal of Pharmaceutics, 289. pp. 51-62. ISSN 0378-5173

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Lyophilised wafers have potential as drug delivery systems for suppurating wounds. A dual series of wafers made from low molecular weight sodium alginate (SA) and xanthan gum (XG) respectively, modified with high molecular weight methylcellulose (MC) were produced. The swelling and flow properties of these wafers on model suppurating surfaces were both qualitatively and quantitatively investigated. The wafers instantaneously adhered to the surfaces, absorbing water and transforming from glassy, porous solids to highly viscous gels. The rate at which this occurred varied for the series studied with clear distinctions between the behaviour of SA and XG systems. For SA wafers there was a distinct relationship between the flow-rate and MC content. Increased amounts of MC decreased the rate at which the SA wafers flowed across a model gelatine surface. Flow rheometry was used to quantify the effect of increased MC content on both series of wafers and for the SA series, highlighted a substantial increase in apparent viscosity as a function of incremental increases in MC content. These results reflected those from the gelatine model. Observations of the reluctance of a swollen, unmodified XG wafer to flow compared with the relative ease of unmodified, low molecular weight SA was attributed to the yield stress characteristic of xanthan gels. XG is known to exhibit complex, loosely bound network structures in solution via the association of helical backbone structures. The inclusion of sodium fluorescein as a visible model for a soluble drug highlighted the potential of lyophilised wafers as useful drug delivery systems for suppurating wounds.