Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Acute ∆9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility

Egerton, A.D. and Brett, R.R. and Pratt, J.A. (2005) Acute ∆9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility. Neuropsychopharmacology, 30. pp. 1895-1905. ISSN 1470-634X

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Despite concerns surrounding the possible adverse effects of marijuana on complex cognitive function, the processes contributing to the observed cognitive deficits are unclear, as are the causal relationships between these impairments and marijuana exposure. In particular, marijuana-related deficits in cognitive flexibility may affect the social functioning of the individual and may contribute to continued marijuana use. We therefore examined the ability of rats to perform affective and attentional shifts following acute administration of D9-tetrahydrocannabinol (THC), the primary psychoactive marijuana constituent. Administration of 1 mg/kg THC produced marked impairments in the ability to reverse previously relevant associations between stimulus features and reward presentation, while the ability to transfer attentional set between dimensional stimulus properties was unaffected. Concurrent in situ hybridization analysis of regional c-fos and ngfi-b expression highlighted areas of the prefrontal cortex and striatum that were recruited in response to both THC administration and task performance. Furthermore, the alterations in mRNA expression in the orbitofrontal cortex and striatum were associated with the ability to perform the reversal discriminations. These findings suggest that marijuana use may produce inelasticity in updating affective associations between stimuli and reinforcement value, and that this effect may arise through dysregulation of orbitofrontal and striatal circuitry