Reliability and validity of the edinburgh visual gait score for cerebral palsy when used by inexperienced observers

Ong, A.M.L. and Hillman, S.J. and Robb, J.E. (2008) Reliability and validity of the edinburgh visual gait score for cerebral palsy when used by inexperienced observers. Gait and Posture, 28 (2). pp. 323-326. ISSN 0966-6362 (http://dx.doi.org/10.1016/j.gaitpost.2008.01.008)

Full text not available in this repository.Request a copy

Abstract

The Edinburgh Visual Gait Score (EVGS) for cerebral palsy has been validated for observer reliability and validity for observers experienced in gait analysis. This study investigated the reliability and validity of the EVGS for observers inexperienced in gait analysis. Six medical students used the score to analyse videotapes from the original study by Read et al. [Read HS, Hazlewood ME, Hillman SJ, Prescott RJ, Robb JE. Edinburgh visual gait score for use in cerebral palsy. J Pediatr Orthop 2003;23:296-301]. These were viewed on two separate occasions to provide inter- and intra-observer reliability, and the results of the numerical items were compared to those from three-dimensional (3D) gait analyses for validity. Observer agreement was tested using Coefficient of Repeatability (CoR), percentage of complete agreement and the kappa statistic. The CoR for inter-observer agreement for inexperienced observers was 5.99/5.07 (Session 1/Session 2) compared to 4.60/3.95 (Session 1/Session 2) for experienced observers. The CoR for intra-observer agreement for inexperienced observers was 5.15 compared to 4.21 for experienced observers. There was complete agreement for 52% of the 10 numerical items with 3D-gait analysis data for inexperienced observers compared to 64% for experienced observers. Ranking of reliability of individual items was similar between the two groups and was generally best for events occurring at the foot and ankle. Observations of gait events by the inexperienced observers using the EVGS were reasonably reliable but not very accurate when compared to experienced observers and 3D-gait analysis.