Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Docking, triggering, and biological activity of dynemicin A in DNA: a computational study

Tuttle, C.T. and Kraka, E. and Cremer, D. (2005) Docking, triggering, and biological activity of dynemicin A in DNA: a computational study. Journal of American Chemical Society, 127. pp. 9469-9484. ISSN 0002-7863

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The triggering and biological activity of the naturally occurring enediyne dynemicin A (1) was investigated, both inside and outside the minor groove of the duplex 10-mer B-DNA sequence d(CTACTACTGG)·d(CCAGTAGTAG), using density functional theory (B3LYP with the 3-21G and 6-31G(d) basis set), BD(T)/cc-pVDZ (Brueckner doubles with a perturbative treatment of triple excitations), and the ONIOM approach. Enediyne 1 is triggered by NADPH in a strongly exothermic reaction (−88 kcal/mol), which involves a number of intermediate steps. Untriggered 1 has a high barrier for the Bergman cyclization (52 kcal/mol) that is lowered after triggering to 16.7 kcal/mol due to an epoxide opening and the accompanying strain relief. The Bergman reaction of triggered 1 is slightly exothermic by 2.8 kcal/mol. The singlet biradical formed in this reaction is kinetically stable (activation enthalpies of 19.5 and 21.8 kcal/mol for retro-Bergman reactions) and is as reactive as para-benzyne. The activity-relevant docking mode is an edge-on insertion into the minor groove, whereas the intercalation between base pairs, although leading to larger binding energies, excludes a triggering of 1 and the development of its biological activity. Therefore, an insertion−intercalation model is developed, which can explain all known experimental observations made for 1. On the basis of the insertion−intercalation model it is explained why large intercalation energies suppress the biological activity of dynemicin and why double-strand scission can be achieved only in a two-step mechanism that involves two enediyne molecules, explaining thus the high ratio of single-strand to double-strand scission observed for 1.