Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Mechanism of olefin hydrosilylation catalyzed by ruCI2(CO)2(PPh3)2

Tuttle, C.T. and Wang, D. and Thiel, W. and Weis, J. and Kohler, J. and Hofmann, M. (2006) Mechanism of olefin hydrosilylation catalyzed by ruCI2(CO)2(PPh3)2. Organometallics, 25. pp. 4504-4513. ISSN 0276-7333

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Density functional theory (DFT) was used to explore the different mechanistic possibilities for the hydrosilylation reaction between methyldimethoxysilane and methylvinyldimethoxysilane catalyzed by the Ru(II) complex dicarbonyldichlorobis(triphenylphosphine)ruthenium(II) (A1). Reaction enthalpy profiles of the Chalk−Harrod, modified Chalk−Harrod, and σ-bond metathesis mechanisms were computed for several different active forms of A1. A total of 10 different pathways with different catalytic cycles and different induction steps were compared. We predict that a σ-bond metathesis mechanism involving the formation of a hydride analogue of A1 is most favored, in contrast to the commonly accepted Chalk−Harrod mechanism of hydrosilylation. The B3LYP-calculated activation energy within the catalytic cycle (ΔHact = 21.8 kcal/mol) is small enough to make A1 a reasonable catalyst for this reaction under the normally applied experimental conditions